IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v201y2010i2p520-536.html
   My bibliography  Save this article

Portfolio selection in stochastic markets with HARA utility functions

Author

Listed:
  • Çanakoglu, Ethem
  • Özekici, Süleyman

Abstract

In this paper, we consider the optimal portfolio selection problem where the investor maximizes the expected utility of the terminal wealth. The utility function belongs to the HARA family which includes exponential, logarithmic, and power utility functions. The main feature of the model is that returns of the risky assets and the utility function all depend on an external process that represents the stochastic market. The states of the market describe the prevailing economic, financial, social, political and other conditions that affect the deterministic and probabilistic parameters of the model. We suppose that the random changes in the market states are depicted by a Markov chain. Dynamic programming is used to obtain an explicit characterization of the optimal policy. In particular, it is shown that optimal portfolios satisfy the separation property and the composition of the risky portfolio does not depend on the wealth of the investor. We also provide an explicit construction of the optimal wealth process and use it to determine various quantities of interest. The return-risk frontiers of the terminal wealth are shown to have linear forms. Special cases are discussed together with numerical illustrations.

Suggested Citation

  • Çanakoglu, Ethem & Özekici, Süleyman, 2010. "Portfolio selection in stochastic markets with HARA utility functions," European Journal of Operational Research, Elsevier, vol. 201(2), pages 520-536, March.
  • Handle: RePEc:eee:ejores:v:201:y:2010:i:2:p:520-536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00165-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dokuchaev, Nikolai, 2007. "Discrete time market with serial correlations and optimal myopic strategies," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1090-1104, March.
    2. U. Çakmak & S. Özekici, 2006. "Portfolio optimization in stochastic markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 151-168, February.
    3. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    4. Wolfgang Breuer & Marc Gurtler, 2006. "Performance Evaluation, Portfolio Selection, and HARA Utility," The European Journal of Finance, Taylor & Francis Journals, vol. 12(8), pages 649-669.
    5. Loistl, Otto, 1976. "The Erroneous Approximation of Expected Utility by Means of a Taylor's Series Expansion: Analytic and Computational Results," American Economic Review, American Economic Association, vol. 66(5), pages 904-910, December.
    6. Hakansson, Nils H, 1971. "On Optimal Myopic Portfolio Policies, With and Without Serial Correlation of Yields," The Journal of Business, University of Chicago Press, vol. 44(3), pages 324-334, July.
    7. Jing-Sheng Song & Paul Zipkin, 1993. "Inventory Control in a Fluctuating Demand Environment," Operations Research, INFORMS, vol. 41(2), pages 351-370, April.
    8. Tomasz Bielecki & Daniel Hernández-Hernández & Stanley R. Pliska, 1999. "Risk sensitive control of finite state Markov chains in discrete time, with applications to portfolio management," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(2), pages 167-188, October.
    9. Lukasz Stettner, 1999. "Risk sensitive portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(3), pages 463-474, December.
    10. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    11. Gordon Pye, 1966. "A Markov Model of the Term Structure," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 80(1), pages 60-72.
    12. MOSSIN, Jan, 1968. "Optimal multiperiod portfolio policies," LIDAM Reprints CORE 19, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Robert J. Elliott & Rogemar S. Mamon, 2003. "A Complete Yield Curve Description Of A Markov Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 317-326.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ethem Çanakoğlu & Süleyman Özekici, 2009. "Portfolio selection in stochastic markets with exponential utility functions," Annals of Operations Research, Springer, vol. 166(1), pages 281-297, February.
    2. Celikyurt, U. & Ozekici, S., 2007. "Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach," European Journal of Operational Research, Elsevier, vol. 179(1), pages 186-202, May.
    3. U. Çakmak & S. Özekici, 2006. "Portfolio optimization in stochastic markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 151-168, February.
    4. Leonid Kogan & Raman Uppal, "undated". "Risk Aversion and Optimal Portfolio Policies in Partial and General Equilibrium Economies," Rodney L. White Center for Financial Research Working Papers 13-00, Wharton School Rodney L. White Center for Financial Research.
    5. Dokuchaev, Nikolai, 2010. "Optimality of myopic strategies for multi-stock discrete time market with management costs," European Journal of Operational Research, Elsevier, vol. 200(2), pages 551-556, January.
    6. Nikolai Dokuchaev, 2015. "Modelling Possibility of Short-Term Forecasting of Market Parameters for Portfolio Selection," Annals of Economics and Finance, Society for AEF, vol. 16(1), pages 143-161, May.
    7. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    8. Fahrenwaldt, Matthias A. & Sun, Chaofan, 2020. "Expected utility approximation and portfolio optimisation," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 301-314.
    9. Alexandra Rodkina & Nikolai Dokuchaev, 2014. "On asymptotic optimality of Merton's myopic portfolio strategies for discrete time market," Papers 1403.4329, arXiv.org, revised Nov 2014.
    10. Manel Baucells & Rakesh K. Sarin, 2019. "The Myopic Property in Decision Models," Decision Analysis, INFORMS, vol. 16(2), pages 128-141, June.
    11. Costanza Torricelli, 2009. "Models For Household Portfolios And Life-Cycle Allocations In The Presence Of Labour Income And Longevity Risk," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0017, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    12. David Feldman, 2007. "Incomplete information equilibria: Separation theorems and other myths," Annals of Operations Research, Springer, vol. 151(1), pages 119-149, April.
    13. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    14. Penikas, Henry, 2010. "Copula-Models in Foreign Exchange Risk-Management of a Bank," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 17(1), pages 62-87.
    15. Stephen Foerster & Juhani T. Linnainmaa & Brian T. Melzer & Alessandro Previtero, 2017. "Retail Financial Advice: Does One Size Fit All?," Journal of Finance, American Finance Association, vol. 72(4), pages 1441-1482, August.
    16. repec:idb:brikps:365 is not listed on IDEAS
    17. Briec, Walter & Kerstens, Kristiaan, 2010. "Portfolio selection in multidimensional general and partial moment space," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 636-656, April.
    18. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    19. Klos, Alexander, 2004. "The investment horizon and dynamic asset allocation--some experimental evidence," Economics Letters, Elsevier, vol. 85(2), pages 167-170, November.
    20. Servaas van Bilsen & Roger J. A. Laeven & Theo E. Nijman, 2020. "Consumption and Portfolio Choice Under Loss Aversion and Endogenous Updating of the Reference Level," Management Science, INFORMS, vol. 66(9), pages 3927-3955, September.
    21. Kai Barron, 2021. "Belief updating: does the ‘good-news, bad-news’ asymmetry extend to purely financial domains?," Experimental Economics, Springer;Economic Science Association, vol. 24(1), pages 31-58, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:2:p:520-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.