IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1911.07526.html
   My bibliography  Save this paper

Bayesian Filtering for Multi-period Mean-Variance Portfolio Selection

Author

Listed:
  • Shubhangi Sikaria
  • Rituparna Sen
  • Neelesh S. Upadhye

Abstract

For a long investment time horizon, it is preferable to rebalance the portfolio weights at intermediate times. This necessitates a multi-period market model in which portfolio optimization is usually done through dynamic programming. However, this assumes a known distribution for the parameters of the financial time series. We consider the situation where this distribution is unknown and needs to be estimated from the data that is arriving dynamically. We applied Bayesian filtering through dynamic linear models to sequentially update the parameters. We considered uncertain investment lifetime to make the model more adaptive to the market conditions. These updated parameters are put into the dynamic mean-variance problem to arrive at optimal efficient portfolios. Extensive simulations are conducted to study the effect of varying underlying parameters and investment horizon on the performance of the method. An implementation of this model to the S&P500 illustrates that the Bayesian updating is strongly favored by the data and that it is practically implementable.

Suggested Citation

  • Shubhangi Sikaria & Rituparna Sen & Neelesh S. Upadhye, 2019. "Bayesian Filtering for Multi-period Mean-Variance Portfolio Selection," Papers 1911.07526, arXiv.org, revised Aug 2020.
  • Handle: RePEc:arx:papers:1911.07526
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1911.07526
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexis Bismuth & Olivier Gu'eant & Jiang Pu, 2016. "Portfolio choice, portfolio liquidation, and portfolio transition under drift uncertainty," Papers 1611.07843, arXiv.org, revised Mar 2019.
    2. Dokuchaev, Nikolai, 2007. "Discrete time market with serial correlations and optimal myopic strategies," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1090-1104, March.
    3. Carmine de Franco & Johann Nicolle & Huyên Pham, 2018. "Bayesian learning for the Markowitz portfolio selection problem," Working Papers hal-01923917, HAL.
    4. Carmine De Franco & Johann Nicolle & Huy^en Pham, 2018. "Bayesian learning for the Markowitz portfolio selection problem," Papers 1811.06893, arXiv.org.
    5. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Jeanblanc, Monique & Martellini, Lionel, 2008. "Optimal investment decisions when time-horizon is uncertain," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1100-1113, December.
    6. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    7. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2017. "Bayesian estimation of the global minimum variance portfolio," European Journal of Operational Research, Elsevier, vol. 256(1), pages 292-307.
    8. Ronald J. Balvers & Douglas W. Mitchell, 1997. "Autocorrelated Returns and Optimal Intertemporal Portfolio Choice," Management Science, INFORMS, vol. 43(11), pages 1537-1551, November.
    9. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
    10. Lionel Martellini & Branko Uroševi'{c}, 2006. "Static Mean-Variance Analysis with Uncertain Time Horizon," Management Science, INFORMS, vol. 52(6), pages 955-964, June.
    11. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    12. Huang, Dashan & Zhu, Shu-Shang & Fabozzi, Frank J. & Fukushima, Masao, 2008. "Portfolio selection with uncertain exit time: A robust CVaR approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 594-623, February.
    13. Celikyurt, U. & Ozekici, S., 2007. "Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach," European Journal of Operational Research, Elsevier, vol. 179(1), pages 186-202, May.
    14. Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
    15. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    16. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    17. David Bauder & Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2021. "Bayesian mean–variance analysis: optimal portfolio selection under parameter uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 21(2), pages 221-242, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    2. Chunhui Xu & Yinyu Ye, 2024. "Optimization of Asset Allocation and Liquidation Time in Investment Decisions with VaR as a Risk Measure," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 551-577, July.
    3. David Bauder & Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2021. "Bayesian mean–variance analysis: optimal portfolio selection under parameter uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 21(2), pages 221-242, February.
    4. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    5. Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020. "Bayesian inference of the multi-period optimal portfolio for an exponential utility," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    6. Taras Bodnar & Mathias Lindholm & Vilhelm Niklasson & Erik Thors'en, 2020. "Bayesian Quantile-Based Portfolio Selection," Papers 2012.01819, arXiv.org.
    7. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    8. Bodnar, Taras & Lindholm, Mathias & Niklasson, Vilhelm & Thorsén, Erik, 2022. "Bayesian portfolio selection using VaR and CVaR," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    9. Carmine De Franco & Johann Nicolle & Huy^en Pham, 2018. "Bayesian learning for the Markowitz portfolio selection problem," Papers 1811.06893, arXiv.org.
    10. Carmine de Franco & Johann Nicolle & Huyên Pham, 2018. "Bayesian learning for the Markowitz portfolio selection problem," Working Papers hal-01923917, HAL.
    11. Carmine De Franco & Johann Nicolle & Huyên Pham, 2019. "Bayesian Learning For The Markowitz Portfolio Selection Problem," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-40, November.
    12. Carmine De Franco & Johann Nicolle & Huyên Pham, 2019. "Dealing with Drift Uncertainty: A Bayesian Learning Approach," Risks, MDPI, vol. 7(1), pages 1-18, January.
    13. Yao, Haixiang & Zeng, Yan & Chen, Shumin, 2013. "Multi-period mean–variance asset–liability management with uncontrolled cash flow and uncertain time-horizon," Economic Modelling, Elsevier, vol. 30(C), pages 492-500.
    14. Ling, Aifan & Sun, Jie & Wang, Meihua, 2020. "Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set," European Journal of Operational Research, Elsevier, vol. 285(1), pages 81-95.
    15. Wu, Huiling & Zeng, Yan & Yao, Haixiang, 2014. "Multi-period Markowitz's mean–variance portfolio selection with state-dependent exit probability," Economic Modelling, Elsevier, vol. 36(C), pages 69-78.
    16. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    17. Trichilli, Yousra & Abbes, Mouna Boujelbène & Masmoudi, Afif, 2020. "Islamic and conventional portfolios optimization under investor sentiment states: Bayesian vs Markowitz portfolio analysis," Research in International Business and Finance, Elsevier, vol. 51(C).
    18. Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    19. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    20. Fu, Chenpeng & Lari-Lavassani, Ali & Li, Xun, 2010. "Dynamic mean-variance portfolio selection with borrowing constraint," European Journal of Operational Research, Elsevier, vol. 200(1), pages 312-319, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1911.07526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.