IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i1d10.1007_s10614-023-10451-x.html
   My bibliography  Save this article

Optimization of Asset Allocation and Liquidation Time in Investment Decisions with VaR as a Risk Measure

Author

Listed:
  • Chunhui Xu

    (Chiba Institute of Technology)

  • Yinyu Ye

    (Stanford University)

Abstract

Asset allocation and investment times are two correlated aspects of investments; however, most research on investment decisions focuses on asset allocation with investment times fixed. This study aims to provide methods to optimize both asset allocation and liquidation time. We use value at risk (VaR), the most widely used risk indicator in the financial industry, to measure the risk of an investment, and construct an investment decision model for risk-oriented investors, which is continuous-time VaR minimization. We adopt a statistical method to estimate VaR that avoids assumptions that are difficult to verify; the corresponding continuous-time VaR minimization model becomes unsolvable with conventional optimization methods. We first suggest an approach to solve the model by solving a sequence of discrete-time VaR minimization models. This approach leads to the optimal solution under some conditions but yields an approximation to the optimal in general. Solving more discrete-time VaR minimization models produces a better result but has an additional computational burden. To improve the efficiency of the optimality-seeking process, we propose a novel strategy to reduce computing load significantly. We examine the reliability of the strategy by conducting computation experiments with actual data from a stock market.

Suggested Citation

  • Chunhui Xu & Yinyu Ye, 2024. "Optimization of Asset Allocation and Liquidation Time in Investment Decisions with VaR as a Risk Measure," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 551-577, July.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:1:d:10.1007_s10614-023-10451-x
    DOI: 10.1007/s10614-023-10451-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10451-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10451-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Jeanblanc, Monique & Martellini, Lionel, 2008. "Optimal investment decisions when time-horizon is uncertain," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1100-1113, December.
    2. Celikyurt, U. & Ozekici, S., 2007. "Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach," European Journal of Operational Research, Elsevier, vol. 179(1), pages 186-202, May.
    3. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    4. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    5. Lionel Martellini & Branko Uroševi'{c}, 2006. "Static Mean-Variance Analysis with Uncertain Time Horizon," Management Science, INFORMS, vol. 52(6), pages 955-964, June.
    6. Huang, Dashan & Zhu, Shu-Shang & Fabozzi, Frank J. & Fukushima, Masao, 2008. "Portfolio selection with uncertain exit time: A robust CVaR approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 594-623, February.
    7. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    8. Hans Rau-Bredow, 2019. "Bigger Is Not Always Safer: A Critical Analysis of the Subadditivity Assumption for Coherent Risk Measures," Risks, MDPI, vol. 7(3), pages 1-18, August.
    9. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    10. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    11. Yanli Huo & Chunhui Xu & Takayuki Shiina, 2020. "Modeling and solving portfolio selection problems based on PVaR," Quantitative Finance, Taylor & Francis Journals, vol. 20(12), pages 1889-1898, December.
    12. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    13. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    2. Shubhangi Sikaria & Rituparna Sen & Neelesh S. Upadhye, 2019. "Bayesian Filtering for Multi-period Mean-Variance Portfolio Selection," Papers 1911.07526, arXiv.org, revised Aug 2020.
    3. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    4. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    5. Fang, Yong & Chen, Lihua & Fukushima, Masao, 2008. "A mixed R&D projects and securities portfolio selection model," European Journal of Operational Research, Elsevier, vol. 185(2), pages 700-715, March.
    6. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    7. Ricca, Federica & Scozzari, Andrea, 2024. "Portfolio optimization through a network approach: Network assortative mixing and portfolio diversification," European Journal of Operational Research, Elsevier, vol. 312(2), pages 700-717.
    8. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    9. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    10. Huhtala, Heli, 2008. "Along but beyond mean-variance: Utility maximization in a semimartingale model," Bank of Finland Research Discussion Papers 5/2008, Bank of Finland.
    11. Tokat, Yesim & Rachev, Svetlozar T. & Schwartz, Eduardo, 2000. "The Stable non-Gaussian Asset Allocation: A Comparison with the Classical Gaussian Approach," University of California at Santa Barbara, Economics Working Paper Series qt9ph6b5gp, Department of Economics, UC Santa Barbara.
    12. Alexis Direr, 2023. "Portfolio Choice With Time Horizon Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 26(06n07), pages 1-19, November.
    13. Yao, Haixiang & Li, Danping & Wu, Huiling, 2022. "Dynamic trading with uncertain exit time and transaction costs in a general Markov market," International Review of Financial Analysis, Elsevier, vol. 84(C).
    14. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    15. Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014. "A Survey On The Four Families Of Performance Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
    16. Lagos, Guido & Espinoza, Daniel & Moreno, Eduardo & Vielma, Juan Pablo, 2015. "Restricted risk measures and robust optimization," European Journal of Operational Research, Elsevier, vol. 241(3), pages 771-782.
    17. Benati, Stefano, 2003. "The optimal portfolio problem with coherent risk measure constraints," European Journal of Operational Research, Elsevier, vol. 150(3), pages 572-584, November.
    18. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    19. Huhtala, Heli, 2008. "Along but beyond mean-variance : Utility maximization in a semimartingale model," Research Discussion Papers 5/2008, Bank of Finland.
    20. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:1:d:10.1007_s10614-023-10451-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.