IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v12y2014icp47-57.html
   My bibliography  Save this article

Contrasting imputation with a latent variable approach to dealing with missing income in choice models

Author

Listed:
  • Sanko, Nobuhiro
  • Hess, Stephane
  • Dumont, Jeffrey
  • Daly, Andrew

Abstract

Income is a key variable in many choice models. It is also one of the most salient examples of a variable affected by data problems. Issues with income arise as measurement errors in categorically captured income, correlation between stated income and unobserved variables, systematic over- or under-statement of income and missing income values for those who refuse to answer or do not know their (household) income. A common approach for dealing especially with missing income is to use imputation based on the relationship among those who report income between their stated income for reporters and their socio-demographic characteristics. A number of authors have also recently put forward a latent variable treatment of the issue, which has theoretical advantages over imputation, not least by drawing not just on data on stated income for reporters, but also choice behaviour of all respondents. We contrast this approach empirically with imputation as well as simpler approaches in two case studies, one with stated preference data and one with revealed preference data. Our findings suggest that, at least with the data at hand, the latent variable approach produces similar results to imputation, possibly an indication of non-reporters of income having similar income distributions from those who report it. But in other data sets the efficiency advantage over imputation could help in revealing issues in the complete and accurate reporting of income.

Suggested Citation

  • Sanko, Nobuhiro & Hess, Stephane & Dumont, Jeffrey & Daly, Andrew, 2014. "Contrasting imputation with a latent variable approach to dealing with missing income in choice models," Journal of choice modelling, Elsevier, vol. 12(C), pages 47-57.
  • Handle: RePEc:eee:eejocm:v:12:y:2014:i:c:p:47-57
    DOI: 10.1016/j.jocm.2014.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534514000372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2014.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jerry Hausman, 2001. "Mismeasured Variables in Econometric Analysis: Problems from the Right and Problems from the Left," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 57-67, Fall.
    2. Brey, Raúl & Walker, Joan L., 2011. "Latent temporal preferences: An application to airline travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 880-895, November.
    3. Stephane Hess & Amanda Stathopoulos & Andrew Daly, 2012. "Allowing for heterogeneous decision rules in discrete choice models: an approach and four case studies," Transportation, Springer, vol. 39(3), pages 565-591, May.
    4. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    5. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    6. Bhat, Chandra R., 1994. "Imputing a continuous income variable from grouped and missing income observations," Economics Letters, Elsevier, vol. 46(4), pages 311-319, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nirmale, Sangram Krishna & Pinjari, Abdul Rawoof, 2023. "Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 169-193.
    2. Francisco J. Bahamonde-Birke & Juan de Dios Ortúzar, 2015. "About the Categorization of Latent Variables in Hybrid Choice Models," Discussion Papers of DIW Berlin 1527, DIW Berlin, German Institute for Economic Research.
    3. Bwambale, Andrew & Choudhury, Charisma F. & Hess, Stephane, 2019. "Modelling departure time choice using mobile phone data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 424-439.
    4. Gopalakrishnan, Raja & Guevara, C. Angelo & Ben-Akiva, Moshe, 2020. "Combining multiple imputation and control function methods to deal with missing data and endogeneity in discrete-choice models," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 45-57.
    5. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "Normative beliefs and modality styles: a latent class and latent variable model of travel behaviour," Transportation, Springer, vol. 45(3), pages 789-825, May.
    6. Yuhan Gao & Jan-Dirk Schmöcker, 2021. "Modelling sequential ticket booking choices during Chinese New Year," Transportation, Springer, vol. 48(4), pages 1987-2010, August.
    7. Irannezhad, Elnaz & Prato, Carlo & Hickman, Mark, 2019. "A joint hybrid model of the choices of container terminals and of dwell time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 119-133.
    8. Bahamonde-Birke, Francisco J. & Hanappi, Tibor, 2016. "The potential of electromobility in Austria: Evidence from hybrid choice models under the presence of unreported information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 30-41.
    9. Francisco J. Bahamonde-Birke & Tibor Hanappi, 2015. "The Potential of Electromobility in Austria: An Analysis Based on Hybrid Choice Models," Discussion Papers of DIW Berlin 1472, DIW Berlin, German Institute for Economic Research.
    10. Afghari, Amir Pooyan & Faghih Imani, Ahmadreza & Papadimitriou, Eleonora & van Gelder, Pieter & Hezaveh, Amin Mohamadi, 2021. "Disentangling the effects of unobserved factors on seatbelt use choices in multi-occupant vehicles," Journal of choice modelling, Elsevier, vol. 41(C).
    11. Binsuwadan, Jawaher & Wardman, Mark & de Jong, Gerard & Batley, Richard & Wheat, Phill, 2023. "The income elasticity of the value of travel time savings: A meta-analysis," Transport Policy, Elsevier, vol. 136(C), pages 126-136.
    12. Biswas, Mehek & Bhat, Chandra R. & Ghosh, Sulagna & Pinjari, Abdul Rawoof, 2024. "Choice models with stochastic variables and random coefficients," Journal of choice modelling, Elsevier, vol. 51(C).
    13. Said, Maher & Abou-Zeid, Maya & Chalak, Ali, 2017. "Investigating the impact of satisfaction indicators on the efficiency of choice models: New evidence from Lebanon," Journal of choice modelling, Elsevier, vol. 22(C), pages 1-12.
    14. Varotto, Silvia F. & Glerum, Aurélie & Stathopoulos, Amanda & Bierlaire, Michel & Longo, Giovanni, 2017. "Mitigating the impact of errors in travel time reporting on mode choice modelling," Journal of Transport Geography, Elsevier, vol. 62(C), pages 236-246.
    15. Tsoleridis, Panagiotis & Choudhury, Charisma F. & Hess, Stephane, 2022. "Utilising activity space concepts to sampling of alternatives for mode and destination choice modelling of discretionary activities," Journal of choice modelling, Elsevier, vol. 42(C).
    16. Maaya, Leonard & Meulders, Michel & Vandebroek, Martina, 2021. "Joint analysis of preferences and drop out data in discrete choice experiments," Journal of choice modelling, Elsevier, vol. 41(C).
    17. Unterberger, Christian & Olschewski, Roland, 2021. "Determining the insurance value of ecosystems: A discrete choice study on natural hazard protection by forests," Ecological Economics, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    2. Kløjgaard, Mirja Elisabeth & Hess, Stephane, 2014. "Understanding the formation and influence of attitudes in patients' treatment choices for lower back pain: Testing the benefits of a hybrid choice model approach," Social Science & Medicine, Elsevier, vol. 114(C), pages 138-150.
    3. Arora, Nikita & Crastes dit Sourd, Romain & Hanson, Kara & Woldesenbet, Dorka & Seifu, Abiy & Quaife, Matthew, 2022. "Linking health worker motivation with their stated job preferences: A hybrid choice analysis in Ethiopia," Social Science & Medicine, Elsevier, vol. 307(C).
    4. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    5. Contu, Davide & Strazzera, Elisabetta, 2022. "Testing for saliency-led choice behavior in discrete choice modeling: An application in the context of preferences towards nuclear energy in Italy," Journal of choice modelling, Elsevier, vol. 44(C).
    6. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2015. "Accommodating taste heterogeneity and desired substitution pattern in exit choices of pedestrian crowd evacuees using a mixed nested logit model," Journal of choice modelling, Elsevier, vol. 16(C), pages 58-68.
    7. Zsanett Blaga & Peter Czine & Barbara Takacs & Anna Szilagyi & Reka Szekeres & Zita Wachal & Csaba Hegedus & Gyula Buchholcz & Balazs Varga & Daniel Priksz & Mariann Bombicz & Adrienn Monika Szabo & R, 2023. "Examination of Preferences for COVID-19 Vaccines in Hungary Based on Their Properties—Examining the Impact of Pandemic Awareness with a Hybrid Choice Approach," IJERPH, MDPI, vol. 20(2), pages 1-16, January.
    8. Varotto, Silvia F. & Glerum, Aurélie & Stathopoulos, Amanda & Bierlaire, Michel & Longo, Giovanni, 2017. "Mitigating the impact of errors in travel time reporting on mode choice modelling," Journal of Transport Geography, Elsevier, vol. 62(C), pages 236-246.
    9. de Jong, Gerben & Behrens, Christiaan & van Herk, Hester & Verhoef, Erik, 2022. "Airfares with codeshares: (why) are consumers willing to pay more for products of foreign firms with a domestic partner?," Journal of Economic Behavior & Organization, Elsevier, vol. 193(C), pages 1-18.
    10. Boeri, Marco & Longo, Alberto, 2017. "The importance of regret minimization in the choice for renewable energy programmes: Evidence from a discrete choice experiment," Energy Economics, Elsevier, vol. 63(C), pages 253-260.
    11. Kim, Jinhee & Rasouli, Soora & Timmermans, Harry, 2017. "Satisfaction and uncertainty in car-sharing decisions: An integration of hybrid choice and random regret-based models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 13-33.
    12. Schmid, Basil & Axhausen, Kay W., 2019. "In-store or online shopping of search and experience goods: A hybrid choice approach," Journal of choice modelling, Elsevier, vol. 31(C), pages 156-180.
    13. Han, Yafei & Pereira, Francisco Camara & Ben-Akiva, Moshe & Zegras, Christopher, 2022. "A neural-embedded discrete choice model: Learning taste representation with strengthened interpretability," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 166-186.
    14. Boeri, Marco & Scarpa, Riccardo & Chorus, Caspar G., 2014. "Stated choices and benefit estimates in the context of traffic calming schemes: Utility maximization, regret minimization, or both?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 121-135.
    15. Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).
    16. Jose J. Soto & Victor Cantillo & Julian Arellana, 2018. "Incentivizing alternative fuel vehicles: the influence of transport policies, attitudes and perceptions," Transportation, Springer, vol. 45(6), pages 1721-1753, November.
    17. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    18. Molloy, Joseph & Becker, Felix & Schmid, Basil & Axhausen, Kay W., 2021. "mixl: An open-source R package for estimating complex choice models on large datasets," Journal of choice modelling, Elsevier, vol. 39(C).
    19. Soto, Jose & Orozco-Fontalvo, Mauricio & Useche, Sergio A., 2022. "Public transportation and fear of crime at BRT Systems: Approaching to the case of Barranquilla (Colombia) through integrated choice and latent variable models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 142-160.
    20. Gerben de Jong & Christiaan Behrens & Hester van Herk & Erik (E.T.) Verhoef, 2018. "Airfares with codeshares: (why) are consumers willing to pay more for products of foreign firms with a domestic partner?," Tinbergen Institute Discussion Papers 18-077/VIII, Tinbergen Institute, revised 28 Feb 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:12:y:2014:i:c:p:47-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.