IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v142y2020icp45-57.html
   My bibliography  Save this article

Combining multiple imputation and control function methods to deal with missing data and endogeneity in discrete-choice models

Author

Listed:
  • Gopalakrishnan, Raja
  • Guevara, C. Angelo
  • Ben-Akiva, Moshe

Abstract

While collecting data for estimating discrete-choice models, researchers often encounter missing information in observations. In addition, endogeneity can occur whenever the error term is not independent of the observed variables. Both problems result in inconsistent estimators of the model parameters. The problems of missing information and endogeneity may occur in the same variable in the data, if, e.g., partially missing price information is correlated with another omitted variable. Extant approaches to correct for endogeneity in discrete choice models, such as the control function method, do not address the problem when the error term is correlated with a variable having missing information. Likewise, approaches to address missing information, such as the multiple imputation method, cannot handle endogeneity problems. To address this challenge, we propose a novel hybrid algorithm by combining the methods of multiple imputation and the control function. We validate the algorithm in a Monte-Carlo experiment and apply it to real data of heavy commercial vehicle parking from Singapore. In this case study, we were able to substantially correct for price endogeneity in the presence of missing price information.

Suggested Citation

  • Gopalakrishnan, Raja & Guevara, C. Angelo & Ben-Akiva, Moshe, 2020. "Combining multiple imputation and control function methods to deal with missing data and endogeneity in discrete-choice models," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 45-57.
  • Handle: RePEc:eee:transb:v:142:y:2020:i:c:p:45-57
    DOI: 10.1016/j.trb.2020.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261520304070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2020.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferreira, Fernando, 2010. "You can take it with you: Proposition 13 tax benefits, residential mobility, and willingness to pay for housing amenities," Journal of Public Economics, Elsevier, vol. 94(9-10), pages 661-673, October.
    2. Hotle, Susan L. & Castillo, Marco & Garrow, Laurie A. & Higgins, Matthew J., 2015. "The impact of advance purchase deadlines on airline consumers’ search and purchase behaviors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 1-16.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    4. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    5. Aviv Nevo, 2000. "Mergers with Differentiated Products: The Case of the Ready-to-Eat Cereal Industry," RAND Journal of Economics, The RAND Corporation, vol. 31(3), pages 395-421, Autumn.
    6. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    7. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    8. Sanko, Nobuhiro & Hess, Stephane & Dumont, Jeffrey & Daly, Andrew, 2014. "Contrasting imputation with a latent variable approach to dealing with missing income in choice models," Journal of choice modelling, Elsevier, vol. 12(C), pages 47-57.
    9. Mark Wardman & Gerard Whelan, 2011. "Twenty Years of Rail Crowding Valuation Studies: Evidence and Lessons from British Experience," Transport Reviews, Taylor & Francis Journals, vol. 31(3), pages 379-398.
    10. Alberto Cavallo, 2018. "More Amazon Effects: Online Competition and Pricing Behaviors," NBER Working Papers 25138, National Bureau of Economic Research, Inc.
    11. Schenker, Nathaniel & Raghunathan, Trivellore E. & Chiu, Pei-Lu & Makuc, Diane M. & Zhang, Guangyu & Cohen, Alan J., 2006. "Multiple Imputation of Missing Income Data in the National Health Interview Survey," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 924-933, September.
    12. Scarpa, R. & Thiene, M. & Train, K., 2008. "Appendix to Utility in WTP space: a tool to address confounding random scale effects in destination choice to the Alps," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 90(4), pages 1-9, January.
    13. Cristian Angelo Guevara & Moshe E. Ben-Akiva, 2012. "Change of Scale and Forecasting with the Control-Function Method in Logit Models," Transportation Science, INFORMS, vol. 46(3), pages 425-437, August.
    14. Bhat, Chandra R., 1994. "Imputing a continuous income variable from grouped and missing income observations," Economics Letters, Elsevier, vol. 46(4), pages 311-319, December.
    15. Riccardo Scarpa & Mara Thiene & Kenneth Train, 2008. "Utility in Willingness to Pay Space: A Tool to Address Confounding Random Scale Effects in Destination Choice to the Alps," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(4), pages 994-1010.
    16. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    17. Rivers, Douglas & Vuong, Quang H., 1988. "Limited information estimators and exogeneity tests for simultaneous probit models," Journal of Econometrics, Elsevier, vol. 39(3), pages 347-366, November.
    18. Guevara, C. Angelo, 2018. "Overidentification tests for the exogeneity of instruments in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 241-253.
    19. Austan Goolsbee & Amil Petrin, 2004. "The Consumer Gains from Direct Broadcast Satellites and the Competition with Cable TV," Econometrica, Econometric Society, vol. 72(2), pages 351-381, March.
    20. Ruud, Paul A, 1983. "Sufficient Conditions for the Consistency of Maximum Likelihood Estimation Despite Misspecifications of Distribution in Multinomial Discrete Choice Models," Econometrica, Econometric Society, vol. 51(1), pages 225-228, January.
    21. J. Miguel Villas-Boas & Russell S. Winer, 1999. "Endogeneity in Brand Choice Models," Management Science, INFORMS, vol. 45(10), pages 1324-1338, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guerrero, Thomas E. & Guevara, C. Angelo & Cherchi, Elisabetta & Ortúzar, Juan de Dios, 2022. "Characterizing the impact of discrete indicators to correct for endogeneity in discrete choice models," Journal of choice modelling, Elsevier, vol. 42(C).
    2. Ingvardson, Jesper Bláfoss & Thorhauge, Mikkel & Nielsen, Otto Anker & Eltved, Morten, 2024. "Public transport route choice modelling: Reducing estimation bias when using smart card data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    3. Rico Krueger & Michel Bierlaire & Prateek Bansal, 2022. "A Data Fusion Approach for Ride-sourcing Demand Estimation: A Discrete Choice Model with Sampling and Endogeneity Corrections," Papers 2212.02178, arXiv.org.
    4. Xidong Ma & Zhihao Zhang & Xiaojiao Li & Yan Li, 2022. "The Relationship between the Outdoor School Violence Distribution and the Outdoor Campus Environment: An Empirical Study from China," IJERPH, MDPI, vol. 19(13), pages 1-33, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2017. "Accounting for price endogeneity in airline itinerary choice models: An application to Continental U.S. markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 228-246.
    2. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    3. Thomas E. Guerrero & C. Angelo Guevara & Elisabetta Cherchi & Juan de Dios Ortúzar, 2021. "Addressing endogeneity in strategic urban mode choice models," Transportation, Springer, vol. 48(4), pages 2081-2102, August.
    4. Guevara, C. Angelo, 2018. "Overidentification tests for the exogeneity of instruments in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 241-253.
    5. Guevara, C. Angelo & Hess, Stephane, 2019. "A control-function approach to correct for endogeneity in discrete choice models estimated on SP-off-RP data and contrasts with an earlier FIML approach by Train & Wilson," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 224-239.
    6. Fernández-Antolín, Anna & Guevara, C. Angelo & de Lapparent, Matthieu & Bierlaire, Michel, 2016. "Correcting for endogeneity due to omitted attitudes: Empirical assessment of a modified MIS method using RP mode choice data," Journal of choice modelling, Elsevier, vol. 20(C), pages 1-15.
    7. Danaf, Mazen & Guevara, C. Angelo & Ben-Akiva, Moshe, 2023. "A control-function correction for endogeneity in random coefficients models: The case of choice-based recommender systems," Journal of choice modelling, Elsevier, vol. 46(C).
    8. Danaf, Mazen & Guevara, Angelo & Atasoy, Bilge & Ben-Akiva, Moshe, 2020. "Endogeneity in adaptive choice contexts: Choice-based recommender systems and adaptive stated preferences surveys," Journal of choice modelling, Elsevier, vol. 34(C).
    9. Cristian Angelo Guevara & Moshe E. Ben-Akiva, 2012. "Change of Scale and Forecasting with the Control-Function Method in Logit Models," Transportation Science, INFORMS, vol. 46(3), pages 425-437, August.
    10. Guevara, C. Angelo & Tang, Yue & Gao, Song, 2018. "The initial condition problem with complete history dependency in learning models for travel choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 850-861.
    11. Amil Petrin & Kenneth Train, 2003. "Omitted Product Attributes in Discrete Choice Models," NBER Working Papers 9452, National Bureau of Economic Research, Inc.
    12. Guevara, C. Angelo & Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs, 2020. "Correcting for endogeneity due to omitted crowding in public transport choice using the Multiple Indicator Solution (MIS) method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 472-484.
    13. de Grange, Louis & González, Felipe & Marechal, Matthieu & Troncoso, Rodrigo, 2024. "Estimating multinomial logit models with endogenous variables: Control function versus two adapted approaches," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    14. Hotle, Susan L. & Castillo, Marco & Garrow, Laurie A. & Higgins, Matthew J., 2015. "The impact of advance purchase deadlines on airline consumers’ search and purchase behaviors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 1-16.
    15. Guerrero, Thomas E. & Guevara, C. Angelo & Cherchi, Elisabetta & Ortúzar, Juan de Dios, 2022. "Characterizing the impact of discrete indicators to correct for endogeneity in discrete choice models," Journal of choice modelling, Elsevier, vol. 42(C).
    16. Fukushi, Mitsuyoshi & Delgado, Felipe & Raveau, Sebastián, 2024. "Impact of omitted variable and simultaneous estimation endogeneity in choice-based revenue management systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    17. Watanabe, Hajime & Maruyama, Takuya, 2023. "A Bayesian instrumental variable model for multinomial choice with correlated alternatives," Journal of choice modelling, Elsevier, vol. 46(C).
    18. Gregory S. Crawford & Nicola Pavanini & Fabiano Schivardi, 2018. "Asymmetric Information and Imperfect Competition in Lending Markets," American Economic Review, American Economic Association, vol. 108(7), pages 1659-1701, July.
    19. Sarrias, Mauricio, 2021. "A two recursive equation model to correct for endogeneity in latent class binary probit models," Journal of choice modelling, Elsevier, vol. 40(C).
    20. Helveston, John Paul & Feit, Elea McDonnell & Michalek, Jeremy J., 2018. "Pooling stated and revealed preference data in the presence of RP endogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 70-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:142:y:2020:i:c:p:45-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.