IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i2p392-401.html
   My bibliography  Save this article

The residual-based predictiveness curve: A visual tool to assess the performance of prediction models

Author

Listed:
  • Giuseppe Casalicchio
  • Bernd Bischl
  • Anne-Laure Boulesteix
  • Matthias Schmid

Abstract

type="main" xml:lang="en"> It is agreed among biostatisticians that prediction models for binary outcomes should satisfy two essential criteria: first, a prediction model should have a high discriminatory power, implying that it is able to clearly separate cases from controls. Second, the model should be well calibrated, meaning that the predicted risks should closely agree with the relative frequencies observed in the data. The focus of this work is on the predictiveness curve, which has been proposed by Huang et al. (Biometrics 63, 2007) as a graphical tool to assess the aforementioned criteria. By conducting a detailed analysis of its properties, we review the role of the predictiveness curve in the performance assessment of biomedical prediction models. In particular, we demonstrate that marker comparisons should not be based solely on the predictiveness curve, as it is not possible to consistently visualize the added predictive value of a new marker by comparing the predictiveness curves obtained from competing models. Based on our analysis, we propose the “residual-based predictiveness curve” (RBP curve), which addresses the aforementioned issue and which extends the original method to settings where the evaluation of a prediction model on independent test data is of particular interest. Similar to the predictiveness curve, the RBP curve reflects both the calibration and the discriminatory power of a prediction model. In addition, the curve can be conveniently used to conduct valid performance checks and marker comparisons.

Suggested Citation

  • Giuseppe Casalicchio & Bernd Bischl & Anne-Laure Boulesteix & Matthias Schmid, 2016. "The residual-based predictiveness curve: A visual tool to assess the performance of prediction models," Biometrics, The International Biometric Society, vol. 72(2), pages 392-401, June.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:2:p:392-401
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schmid, Matthias & Tutz, Gerhard & Welchowski, Thomas, 2018. "Discrimination measures for discrete time-to-event predictions," Econometrics and Statistics, Elsevier, vol. 7(C), pages 153-164.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:2:p:392-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.