IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i3p823-833.html
   My bibliography  Save this article

A scalable multi‐resolution spatio‐temporal model for brain activation and connectivity in fMRI data

Author

Listed:
  • Stefano Castruccio
  • Hernando Ombao
  • Marc G. Genton

Abstract

Functional Magnetic Resonance Imaging (fMRI) is a primary modality for studying brain activity. Modeling spatial dependence of imaging data at different spatial scales is one of the main challenges of contemporary neuroimaging, and it could allow for accurate testing for significance in neural activity. The high dimensionality of this type of data (on the order of hundreds of thousands of voxels) poses serious modeling challenges and considerable computational constraints. For the sake of feasibility, standard models typically reduce dimensionality by modeling covariance among regions of interest (ROIs)—coarser or larger spatial units—rather than among voxels. However, ignoring spatial dependence at different scales could drastically reduce our ability to detect activation patterns in the brain and hence produce misleading results. We introduce a multi‐resolution spatio‐temporal model and a computationally efficient methodology to estimate cognitive control related activation and whole‐brain connectivity. The proposed model allows for testing voxel‐specific activation while accounting for non‐stationary local spatial dependence within anatomically defined ROIs, as well as regional dependence (between‐ROIs). The model is used in a motor‐task fMRI study to investigate brain activation and connectivity patterns aimed at identifying associations between these patterns and regaining motor functionality following a stroke.

Suggested Citation

  • Stefano Castruccio & Hernando Ombao & Marc G. Genton, 2018. "A scalable multi‐resolution spatio‐temporal model for brain activation and connectivity in fMRI data," Biometrics, The International Biometric Society, vol. 74(3), pages 823-833, September.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:823-833
    DOI: 10.1111/biom.12844
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12844
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12844?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dubin, Robin A, 1988. "Estimation of Regression Coefficients in the Presence of Spatially Autocorrelated Error Terms," The Review of Economics and Statistics, MIT Press, vol. 70(3), pages 466-474, August.
    2. Gordana Derado & F. DuBois Bowman & Clinton D. Kilts, 2010. "Modeling the Spatial and Temporal Dependence in fMRI Data," Biometrics, The International Biometric Society, vol. 66(3), pages 949-957, September.
    3. Hakmook Kang & Hernando Ombao & Crystal Linkletter & Nicole Long & David Badre, 2012. "Spatio-Spectral Mixed-Effects Model for Functional Magnetic Resonance Imaging Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 568-577, June.
    4. Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226, February.
    5. Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848, September.
    6. Bowman, F. Dubois, 2007. "Spatiotemporal Models for Region of Interest Analyses of Functional Neuroimaging Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 442-453, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edwards, Matthew & Castruccio, Stefano & Hammerling, Dorit, 2020. "Marginally parameterized spatio-temporal models and stepwise maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    2. Felipe Tagle & Marc G. Genton & Andrew Yip & Suleiman Mostamandi & Georgiy Stenchikov & Stefano Castruccio, 2020. "Rejoinder to the discussion on A high‐resolution bilevel skew‐t stochastic generator for assessing Saudi Arabia's wind energy resources," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    3. Suprateek Kundu & Benjamin B. Risk, 2021. "Scalable Bayesian matrix normal graphical models for brain functional networks," Biometrics, The International Biometric Society, vol. 77(2), pages 439-450, June.
    4. Marc G. Genton & Ying Sun, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 338-341, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    2. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    3. Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    4. Ranadeep Daw & Christopher K. Wikle, 2023. "REDS: Random ensemble deep spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    5. K. Shuvo Bakar, 2020. "Interpolation of daily rainfall data using censored Bayesian spatially varying model," Computational Statistics, Springer, vol. 35(1), pages 135-152, March.
    6. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    7. Brian J. Reich & Joseph Guinness & Simon N. Vandekar & Russell T. Shinohara & Ana†Maria Staicu, 2018. "Fully Bayesian spectral methods for imaging data," Biometrics, The International Biometric Society, vol. 74(2), pages 645-652, June.
    8. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    9. Bledar A. Konomi & Emily L. Kang & Ayat Almomani & Jonathan Hobbs, 2023. "Bayesian Latent Variable Co-kriging Model in Remote Sensing for Quality Flagged Observations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 423-441, September.
    10. Hossein Boojari & Majid Khaledi & Firoozeh Rivaz, 2016. "A non-homogeneous skew-Gaussian Bayesian spatial model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 55-73, March.
    11. Paciorek, Christopher J. & Lipshitz, Benjamin & Zhuo, Wei & Prabhat, . & Kaufman, Cari G. G. & Thomas, Rollin C., 2015. "Parallelizing Gaussian Process Calculations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i10).
    12. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    13. Guhaniyogi, Rajarshi & Banerjee, Sudipto, 2019. "Multivariate spatial meta kriging," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 3-8.
    14. Morales-Oñate, Víctor & Crudu, Federico & Bevilacqua, Moreno, 2021. "Blockwise Euclidean likelihood for spatio-temporal covariance models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 176-201.
    15. Litvinenko, Alexander & Sun, Ying & Genton, Marc G. & Keyes, David E., 2019. "Likelihood approximation with hierarchical matrices for large spatial datasets," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 115-132.
    16. Andrew O. Finley & Sudipto Banerjee & Patrik Waldmann & Tore Ericsson, 2009. "Hierarchical Spatial Modeling of Additive and Dominance Genetic Variance for Large Spatial Trial Datasets," Biometrics, The International Biometric Society, vol. 65(2), pages 441-451, June.
    17. Qian Ren & Sudipto Banerjee, 2013. "Hierarchical Factor Models for Large Spatially Misaligned Data: A Low-Rank Predictive Process Approach," Biometrics, The International Biometric Society, vol. 69(1), pages 19-30, March.
    18. Adrian W. Bowman & Marco Giannitrapani & E. Marian Scott, 2009. "Spatiotemporal smoothing and sulphur dioxide trends over Europe," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 737-752, December.
    19. Jonathan Bradley & Noel Cressie & Tao Shi, 2015. "Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 1-28, March.
    20. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:823-833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.