IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i525p115-128.html
   My bibliography  Save this article

FreSpeD: Frequency-Specific Change-Point Detection in Epileptic Seizure Multi-Channel EEG Data

Author

Listed:
  • Anna Louise Schröder
  • Hernando Ombao

Abstract

The goal in this article is to develop a practical tool that identifies changes in the brain activity as recorded in electroencephalograms (EEG). Our method is devised to detect possibly subtle disruptions in normal brain functioning that precede the onset of an epileptic seizure. Moreover, it is able to capture the evolution of seizure spread from one region (or channel) to another. The proposed frequency-specific change-point detection method (FreSpeD) deploys a cumulative sum-type test statistic within a binary segmentation algorithm. We demonstrate the theoretical properties of FreSpeD and show its robustness to parameter choice and advantages against two competing methods. Furthermore, the FreSpeD method produces directly interpretable output. When applied to epileptic seizure EEG data, FreSpeD identifies the correct brain region as the focal point of seizure and the timing of the seizure onset. Moreover, FreSpeD detects changes in cross-coherence immediately before seizure onset which indicate an evolution leading up to the seizure. These changes are subtle and were not captured by the methods that previously analyzed the same EEG data. Supplementary materials for this article are available online.

Suggested Citation

  • Anna Louise Schröder & Hernando Ombao, 2019. "FreSpeD: Frequency-Specific Change-Point Detection in Epileptic Seizure Multi-Channel EEG Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 115-128, January.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:115-128
    DOI: 10.1080/01621459.2018.1476238
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1476238
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1476238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang-Ping Lu & Shao-Tung Chang, 2021. "Robust Algorithms for Change-Point Regressions Using the t -Distribution," Mathematics, MDPI, vol. 9(19), pages 1-28, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:115-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.