IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i517p410-423.html
   My bibliography  Save this article

A Concave Pairwise Fusion Approach to Subgroup Analysis

Author

Listed:
  • Shujie Ma
  • Jian Huang

Abstract

An important step in developing individualized treatment strategies is correct identification of subgroups of a heterogeneous population to allow specific treatment for each subgroup. This article considers the problem using samples drawn from a population consisting of subgroups with different mean values, along with certain covariates. We propose a penalized approach for subgroup analysis based on a regression model, in which heterogeneity is driven by unobserved latent factors and thus can be represented by using subject-specific intercepts. We apply concave penalty functions to pairwise differences of the intercepts. This procedure automatically divides the observations into subgroups. To implement the proposed approach, we develop an alternating direction method of multipliers algorithm with concave penalties and demonstrate its convergence. We also establish the theoretical properties of our proposed estimator and determine the order requirement of the minimal difference of signals between groups to recover them. These results provide a sound basis for making statistical inference in subgroup analysis. Our proposed method is further illustrated by simulation studies and analysis of a Cleveland heart disease dataset. Supplementary materials for this article are available online.

Suggested Citation

  • Shujie Ma & Jian Huang, 2017. "A Concave Pairwise Fusion Approach to Subgroup Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 410-423, January.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:410-423
    DOI: 10.1080/01621459.2016.1148039
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1148039
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1148039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:410-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.