IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v234y2023i2p714-731.html
   My bibliography  Save this article

Estimation and inference of treatment effects with L2-boosting in high-dimensional settings

Author

Listed:
  • Kueck, Jannis
  • Luo, Ye
  • Spindler, Martin
  • Wang, Zigan

Abstract

Empirical researchers are increasingly faced with rich data sets containing many controls or instrumental variables, making it essential to choose an appropriate approach to variable selection. In this paper, we provide results for valid inference after post- or orthogonal L2-boosting is used for variable selection. We consider treatment effects after selecting among many control variables and instrumental variable models with potentially many instruments. To achieve this, we establish new results for the rate of convergence of iterated post-L2-boosting and orthogonal L2-boosting in a high-dimensional setting similar to Lasso, i.e., under approximate sparsity without assuming the beta-min condition. These results are extended to the 2SLS framework and valid inference is provided for treatment effect analysis. We give extensive simulation results for the proposed methods and compare them with Lasso. In an empirical application, we construct efficient IVs with our proposed methods to estimate the effect of pre-merger overlap of bank branch networks in the US on the post-merger stock returns of the acquirer bank.

Suggested Citation

  • Kueck, Jannis & Luo, Ye & Spindler, Martin & Wang, Zigan, 2023. "Estimation and inference of treatment effects with L2-boosting in high-dimensional settings," Journal of Econometrics, Elsevier, vol. 234(2), pages 714-731.
  • Handle: RePEc:eee:econom:v:234:y:2023:i:2:p:714-731
    DOI: 10.1016/j.jeconom.2022.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407622000471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jith Jayaratne & Philip E. Strahan, 1996. "The Finance-Growth Nexus: Evidence from Bank Branch Deregulation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(3), pages 639-670.
    2. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    3. Ross Levine & Chen Lin & Zigan Wang, 2020. "Bank Networks and Acquisitions," Management Science, INFORMS, vol. 66(11), pages 5216-5241, November.
    4. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    5. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
    6. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    7. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Vogt, Michael, 2020. "On the differences between L2Boosting and the Lasso," Statistics & Probability Letters, Elsevier, vol. 157(C).
    9. Jingshen Wang & Xuming He & Gongjun Xu, 2020. "Debiased Inference on Treatment Effect in a High-Dimensional Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 442-454, January.
    10. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Waverly & Zhou, Yuqing & Zheng, Zeyu & Wang, Jingshen, 2024. "Inference on the best policies with many covariates," Journal of Econometrics, Elsevier, vol. 239(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jannis Kueck & Ye Luo & Martin Spindler & Zigan Wang, 2017. "Estimation and Inference of Treatment Effects with $L_2$-Boosting in High-Dimensional Settings," Papers 1801.00364, arXiv.org, revised Jul 2021.
    2. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    3. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    4. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    5. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    6. Christian Hansen & Damian Kozbur & Sanjog Misra, 2016. "Targeted undersmoothing," ECON - Working Papers 282, Department of Economics - University of Zurich, revised Apr 2018.
    7. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
    8. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    9. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    10. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    11. Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2023. "Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 235(1), pages 166-179.
    12. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    13. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
    14. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    15. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    16. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    17. Strittmatter, Anthony & Wunsch, Conny, 2021. "The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?," Working papers 2021/05, Faculty of Business and Economics - University of Basel.
    18. Neng-Chieh Chang, 2020. "The Mode Treatment Effect," Papers 2007.11606, arXiv.org.
    19. Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2024. "Reprint: Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 239(2).
    20. Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.

    More about this item

    Keywords

    L2-boosting; Treatment effects; Instrumental variables; Post-selection inference; High-dimensional data;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:234:y:2023:i:2:p:714-731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.