IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v31y2015i06p1331-1358_00.html
   My bibliography  Save this article

Differencing Transformations And Inference In Predictive Regression Models

Author

Listed:
  • Camponovo, Lorenzo

Abstract

The limit distribution of conventional test statistics for predictability may depend on the degree of persistence of the predictors. Therefore, diverging results and conclusions may arise because of the different asymptotic theories adopted. Using differencing transformations, we introduce a new class of estimators and test statistics for predictive regression models with Gaussian limit distribution that is instead insensitive to the degree of persistence of the predictors. This desirable feature allows to construct Gaussian confidence intervals for the parameter of interest in stationary, nonstationary, and even locally explosive settings. Besides the limit distribution, we also study the efficiency and the rate of convergence of our new class of estimators. We show that the rate of convergence is $\sqrt n $ in stationary cases, while it can be arbitrarily close to n in nonstationary settings, still preserving the Gaussian limit distribution. Monte Carlo simulations confirm the high reliability and accuracy of our test statistics.

Suggested Citation

  • Camponovo, Lorenzo, 2015. "Differencing Transformations And Inference In Predictive Regression Models," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1331-1358, December.
  • Handle: RePEc:cup:etheor:v:31:y:2015:i:06:p:1331-1358_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000723/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
    2. Pitarakis, Jean-Yves, 2019. "Predictive Regressions," UC3M Working papers. Economics 28554, Universidad Carlos III de Madrid. Departamento de Economía.
    3. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:31:y:2015:i:06:p:1331-1358_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.