IDEAS home Printed from https://ideas.repec.org/p/ecm/feam04/518.html
   My bibliography  Save this paper

Covariance-based orthogonality tests for regressors with unknown persistence

Author

Listed:
  • Katsumi Shimotsu
  • Alex Maynard

Abstract

This paper develops a new covariance-based test of orthogonality that may be attractive when regressors have roots close or equal to unity. In this case standard regression-based orthogonality tests can suffer from (i) size distortions and (ii) uncertainty regarding the appropriate model in which to frame the alternative hypothesis. The new test has good size and power against a wide range of reasonable alternatives for stationary, non-stationary, and local to unity regressors, while avoiding non-standard limiting distributions, size correction, and unit root pre-tests. Asymptotic results are derived and simulations suggest good small sample performance. As an empirical application we test for the predictability of stock returns using two persistent regressors, the dividend-price-ratio and short-term interest rate. The recent literature highlights the role of size distortions in traditional tests using these predictors. On the other hand, while often overturning these rejections, recently employed size-corrected regression-based tests may restrict power to alternatives that become less plausible the more persistent the regressor. The covariance-based tests, which have correct size without restricting power, also show considerably weaker evidence against orthogonality than do traditional regressions. Nevertheless, even allowing for near-unit root behavior, in many cases we still reject orthogonality at long horizons using the dividend yield and at short to medium horizons using the one-month treasury bill rate

Suggested Citation

  • Katsumi Shimotsu & Alex Maynard, 2004. "Covariance-based orthogonality tests for regressors with unknown persistence," Econometric Society 2004 Far Eastern Meetings 518, Econometric Society.
  • Handle: RePEc:ecm:feam04:518
    as

    Download full text from publisher

    File URL: http://www.chass.utoronto.ca/~amaynard/papers/oneside29.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Amihud, Yakov & Hurvich, Clifford M., 2004. "Predictive Regressions: A Reduced-Bias Estimation Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(4), pages 813-841, December.
    2. Campbell, J.Y. & Shiller, R.J., 1988. "Stock Prices, Earnings And Expected Dividends," Papers 334, Princeton, Department of Economics - Econometric Research Program.
    3. Goetzmann, William Nelson & Jorion, Philippe, 1993. "Testing the Predictive Power of Dividend Yields," Journal of Finance, American Finance Association, vol. 48(2), pages 663-679, June.
    4. Robert J. Shiller, 1984. "Stock Prices and Social Dynamics," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 15(2), pages 457-510.
    5. Alex Maynard, 2006. "The forward premium anomaly: statistical artefact or economic puzzle? New evidence from robust tests," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 39(4), pages 1244-1281, November.
    6. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    7. Peter C.B. Phillips, 1999. "Discrete Fourier Transforms of Fractional Processes," Cowles Foundation Discussion Papers 1243, Cowles Foundation for Research in Economics, Yale University.
    8. Markku Lanne, 2002. "Testing The Predictability Of Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 407-415, August.
    9. Campbell, Bryan & Dufour, Jean-Marie, 1997. "Exact Nonparametric Tests of Orthogonality and Random Walk in the Presence of a Drift Parameter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(1), pages 151-173, February.
    10. Wright, Jonathan H, 2000. "Confidence Sets for Cointegrating Coefficients Based on Stationarity Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 211-222, April.
    11. Walter Torous & Rossen Valkanov & Shu Yan, 2004. "On Predicting Stock Returns with Nearly Integrated Explanatory Variables," The Journal of Business, University of Chicago Press, vol. 77(4), pages 937-966, October.
    12. repec:cup:etheor:v:10:y:1994:i:3-4:p:672-700 is not listed on IDEAS
    13. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    14. Marmer, Vadim, 2008. "Nonlinearity, nonstationarity, and spurious forecasts," Journal of Econometrics, Elsevier, vol. 142(1), pages 1-27, January.
    15. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    16. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    17. Phillips, Peter C.B., 2005. "Challenges of trending time series econometrics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(5), pages 401-416.
    18. Elliott, Graham & Stock, James H., 1994. "Inference in Time Series Regression When the Order of Integration of a Regressor is Unknown," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 672-700, August.
    19. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    20. Gregory Mankiw, N. & Shapiro, Matthew D., 1986. "Do we reject too often? : Small sample properties of tests of rational expectations models," Economics Letters, Elsevier, vol. 20(2), pages 139-145.
    21. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
    22. Rudebusch, Glenn D, 1992. "Trends and Random Walks in Macroeconomic Time Series: A Re-examination," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(3), pages 661-680, August.
    23. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    24. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    25. Stock, James H., 1991. "Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series," Journal of Monetary Economics, Elsevier, vol. 28(3), pages 435-459, December.
    26. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    27. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    28. repec:bla:jfinan:v:43:y:1988:i:3:p:661-76 is not listed on IDEAS
    29. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    30. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    31. Richardson, Matthew & Stock, James H., 1989. "Drawing inferences from statistics based on multiyear asset returns," Journal of Financial Economics, Elsevier, vol. 25(2), pages 323-348, December.
    32. Nelson, Charles R & Kim, Myung J, 1993. "Predictable Stock Returns: The Role of Small Sample Bias," Journal of Finance, American Finance Association, vol. 48(2), pages 641-661, June.
    33. Yakov Amihud & Clifford Hurvich & Yi Wang, 2004. "Hypothesis Testing in Predictive Regressions," Finance 0412022, University Library of Munich, Germany.
    34. Wolf, Michael, 2000. "Stock Returns and Dividend Yields Revisited: A New Way to Look at an Old Problem," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 18-30, January.
    35. Saikkonen, Pentti & Lütkepohl, HELMUT, 1996. "Infinite-Order Cointegrated Vector Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 12(5), pages 814-844, December.
    36. Jansson, Michael, 2002. "Consistent Covariance Matrix Estimation For Linear Processes," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1449-1459, December.
    37. Valkanov, Rossen, 2003. "Long-horizon regressions: theoretical results and applications," Journal of Financial Economics, Elsevier, vol. 68(2), pages 201-232, May.
    38. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(5), pages 1131-1147, October.
    39. Graham Elliott, 1998. "On the Robustness of Cointegration Methods when Regressors Almost Have Unit Roots," Econometrica, Econometric Society, vol. 66(1), pages 149-158, January.
    40. repec:cup:etheor:v:11:y:1995:i:5:p:1131-47 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
    2. Yakov Amihud & Clifford Hurvich & Yi Wang, 2004. "Hypothesis Testing in Predictive Regressions," Finance 0412022, University Library of Munich, Germany.
    3. Paulo M.M. Rodrigues & Antonio Rubia, 2011. "A Class of Robust Tests in Augmented Predictive Regressions," Working Papers w201126, Banco de Portugal, Economics and Research Department.
    4. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    5. Jin Lee, 2012. "Nonparametric Testing for Long-Run Neutrality with Applications to US Money and Output Data," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 183-202, August.
    6. Breitung, Jörg & Demetrescu, Matei, 2015. "Instrumental variable and variable addition based inference in predictive regressions," Journal of Econometrics, Elsevier, vol. 187(1), pages 358-375.
    7. Alex Maynard, 2006. "The forward premium anomaly: statistical artefact or economic puzzle? New evidence from robust tests," Canadian Journal of Economics, Canadian Economics Association, vol. 39(4), pages 1244-1281, November.
    8. Aaron Smallwood; Alex Maynard; Mark Wohar, 2005. "The Long and the Short of It: Long Memory Regressors and Predictive Regressions," Computing in Economics and Finance 2005 384, Society for Computational Economics.
    9. Liu, Guannan & Yao, Shuang, 2020. "A robust test for predictability with unknown persistence," Economics Letters, Elsevier, vol. 189(C).
    10. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Extensions to IVX methods of inference for return predictability," Journal of Econometrics, Elsevier, vol. 237(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Hjalmarsson, 2006. "Inference in Long-Horizon Regressions," International Finance Discussion Papers 853, Board of Governors of the Federal Reserve System (U.S.).
    2. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    3. Hjalmarsson, Erik, 2005. "On the Predictability of Global Stock Returns," Working Papers in Economics 161, University of Gothenburg, Department of Economics.
    4. Chiquoine, Benjamin & Hjalmarsson, Erik, 2009. "Jackknifing stock return predictions," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 793-803, December.
    5. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    6. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    7. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    8. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    9. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    10. repec:grz:wpaper:2012-02 is not listed on IDEAS
    11. Nelson C. Mark & Donggyu Sul, 2004. "The Use of Predictive Regressions at Alternative Horizons in Finance and Economics," Finance 0409032, University Library of Munich, Germany.
    12. Charlotte S. Hansen & Bjorn E. Tuypens, 2004. "Long-Run Regressions: Theory and Application to US Asset Markets," Finance 0410018, University Library of Munich, Germany.
    13. Jiang, Xiaoquan & Lee, Bong-Soo, 2007. "Stock returns, dividend yield, and book-to-market ratio," Journal of Banking & Finance, Elsevier, vol. 31(2), pages 455-475, February.
    14. Paulo M.M. Rodrigues & Antonio Rubia, 2011. "A Class of Robust Tests in Augmented Predictive Regressions," Working Papers w201126, Banco de Portugal, Economics and Research Department.
    15. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    16. repec:wyi:journl:002108 is not listed on IDEAS
    17. Lorenzo Camponovo & O. Scaillet & Fabio Trojani, 2013. "Predictability Hidden by Anomalous Observations," Swiss Finance Institute Research Paper Series 13-05, Swiss Finance Institute.
    18. Jacob Boudoukh & Matthew Richardson & Robert F. Whitelaw, 2008. "The Myth of Long-Horizon Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1577-1605, July.
    19. Kostakis, Alexandros & Magdalinos, Tassos & Stamatogiannis, Michalis P., 2023. "Taking stock of long-horizon predictability tests: Are factor returns predictable?," Journal of Econometrics, Elsevier, vol. 237(2).
    20. Alex Maynard, 2006. "The forward premium anomaly: statistical artefact or economic puzzle? New evidence from robust tests," Canadian Journal of Economics, Canadian Economics Association, vol. 39(4), pages 1244-1281, November.
    21. Kurozumi, Eiji & Aono, Kohei, 2013. "Estimation And Inference In Predictive Regressions," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 54(2), pages 231-250, December.
    22. Hjalmarsson, Erik, 2008. "Interpreting long-horizon estimates in predictive regressions," Finance Research Letters, Elsevier, vol. 5(2), pages 104-117, June.

    More about this item

    Keywords

    unit roots; local-to-unity; market efficiency; orthogonality tests; long-run covariance;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:feam04:518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.