Predictive quantile regression with persistent covariates: IVX-QR approach
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
References listed on IDEAS
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Phillips, Peter C B, 1995.
"Fully Modified Least Squares and Vector Autoregression,"
Econometrica, Econometric Society, vol. 63(5), pages 1023-1078, September.
- Peter C.B. Phillips, 1993. "Fully Modified Least Squares and Vector Autoregression," Cowles Foundation Discussion Papers 1047, Cowles Foundation for Research in Economics, Yale University.
- Victor Chernozhukov & Iván Fernández-Val, 2011.
"Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(2), pages 559-589.
- Victor Chernozhukov & Ivan Fernandez-Val, 2009. "Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks," Papers 0912.5013, arXiv.org.
- Victor Chernozhukov & Ivan Fernandez-Val, 2011. "Inference for extremal conditional quantile models, with an application to market and birthweight risks," CeMMAP working papers CWP40/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Campbell, John Y. & Yogo, Motohiro, 2006.
"Efficient tests of stock return predictability,"
Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
- John Y. Campbell & Motohiro Yogo, 2002. "Efficient Tests of Stock Return Predictability," Harvard Institute of Economic Research Working Papers 1972, Harvard - Institute of Economic Research.
- Campbell, John & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Scholarly Articles 3122601, Harvard University Department of Economics.
- John Y. Campbell & Motohiro Yogo, 2003. "Efficient Tests of Stock Return Predictability," NBER Working Papers 10026, National Bureau of Economic Research, Inc.
- Koenker,Roger, 2005.
"Quantile Regression,"
Cambridge Books,
Cambridge University Press, number 9780521845731, January.
- Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275, January.
- Linton, O. & Whang, Yoon-Jae, 2007. "The quantilogram: With an application to evaluating directional predictability," Journal of Econometrics, Elsevier, vol. 141(1), pages 250-282, November.
- Victor Chernozhukov, 2005. "Extremal quantile regression," Papers math/0505639, arXiv.org.
- Michael Jansson & Marcelo J. Moreira, 2006.
"Optimal Inference in Regression Models with Nearly Integrated Regressors,"
Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
- Michael Jansson & Marcelo J. Moreira, 2004. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Harvard Institute of Economic Research Working Papers 2047, Harvard - Institute of Economic Research.
- Michael Jansson & Marcelo J. Moreira, 2004. "Optimal Inference in Regression Models with Nearly Integrated Regressors," NBER Technical Working Papers 0303, National Bureau of Economic Research, Inc.
- Xiao, Zhijie, 2009.
"Quantile cointegrating regression,"
Journal of Econometrics, Elsevier, vol. 150(2), pages 248-260, June.
- Zhijie Xiao, 2009. "Quantile Cointegrating Regression," Boston College Working Papers in Economics 708, Boston College Department of Economics.
- Elliott, Graham & Stock, James H., 1994.
"Inference in Time Series Regression When the Order of Integration of a Regressor is Unknown,"
Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 672-700, August.
- Graham Elliott & James H. Stock, 1992. "Inference in Time Series Regression When the Order of Integration of a Regressor is Unknown," NBER Technical Working Papers 0122, National Bureau of Economic Research, Inc.
- Phillips, Peter C.B. & Magdalinos, Tassos, 2007.
"Limit theory for moderate deviations from a unit root,"
Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
- Peter C.B. Phillips & Tassos Magdalinos, 2004. "Limit Theory for Moderate Deviations from a Unit Root," Cowles Foundation Discussion Papers 1471, Cowles Foundation for Research in Economics, Yale University.
- Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016.
"The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series,"
Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series," CeMMAP working papers 06/14, Institute for Fiscal Studies.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series," CeMMAP working papers CWP06/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The Cross-Quantilogram: Measuring Quantile Dependence and Testing Directional Predictability between Time Series," Cambridge Working Papers in Economics 1452, Faculty of Economics, University of Cambridge.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Stock, James H., 1991.
"Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series,"
Journal of Monetary Economics, Elsevier, vol. 28(3), pages 435-459, December.
- James H. Stock, 1991. "Confidence Intervals for the Largest Autoresgressive Root in U.S. Macroeconomic Time Series," NBER Technical Working Papers 0105, National Bureau of Economic Research, Inc.
- Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(5), pages 1131-1147, October.
- Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
- Phillips, P.C.B., 1989.
"Partially Identified Econometric Models,"
Econometric Theory, Cambridge University Press, vol. 5(2), pages 181-240, August.
- Peter C.B. Phillips, 1987. "Partially Identified Econometric Models," Cowles Foundation Discussion Papers 845R, Cowles Foundation for Research in Economics, Yale University, revised Aug 1988.
- Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
- Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
- Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
- Peter C. B. Phillips, 2014.
"On Confidence Intervals for Autoregressive Roots and Predictive Regression,"
Econometrica, Econometric Society, vol. 82(3), pages 1177-1195, May.
- Peter C.B. Phillips, 2012. "On Confidence Intervals for Autoregressive Roots and Predictive Regression," Cowles Foundation Discussion Papers 1879, Cowles Foundation for Research in Economics, Yale University.
- repec:taf:jnlbes:v:30:y:2012:i:2:p:229-241 is not listed on IDEAS
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
- Alexandros Kostakis & Tassos Magdalinos & Michalis P. Stamatogiannis, 2015. "Robust Econometric Inference for Stock Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1506-1553.
- Anna Mikusheva, 2007. "Uniform Inference in Autoregressive Models," Econometrica, Econometric Society, vol. 75(5), pages 1411-1452, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maynard, Alex & Shimotsu, Katsumi & Kuriyama, Nina, 2024. "Inference in predictive quantile regressions," Journal of Econometrics, Elsevier, vol. 245(1).
- Maynard, Alex & Shimotsu, Katsumi & Kuriyama, Nina, 2024.
"Inference in predictive quantile regressions,"
Journal of Econometrics, Elsevier, vol. 245(1).
- Alex Maynard & Katsumi Shimotsu & Nina Kuriyama, 2023. "Inference in Predictive Quantile Regressions," Papers 2306.00296, arXiv.org, revised May 2024.
- Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
- Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
- Liu, Yanbo & Phillips, Peter C.B., 2023.
"Robust inference with stochastic local unit root regressors in predictive regressions,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 563-591.
- Yanbo Liu & Peter C.B. Phillips, 2021. "Robust Inference with Stochastic Local Unit Root Regressors in Predictive Regressions," Cowles Foundation Discussion Papers 2305, Cowles Foundation for Research in Economics, Yale University.
- Narayan, Seema & Smyth, Russell, 2015.
"The financial econometrics of price discovery and predictability,"
International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
- Seema Narayan & Russell Smyth, 2015. "The Financial Econometrics of Price Discovery and Predictability," Monash Economics Working Papers 06-15, Monash University, Department of Economics.
- Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023.
"Transformed regression-based long-horizon predictability tests,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Demetrescu, Matei & Rodrigues, Paulo MM & Taylor, AM Robert, 2022. "Transformed Regression-based Long-Horizon Predictability Tests," Essex Finance Centre Working Papers 30620, University of Essex, Essex Business School.
- Zhishui Hu & Ioannis Kasparis & Qiying Wang, 2020. "Locally trimmed least squares: conventional inference in possibly nonstationary models," Papers 2006.12595, arXiv.org.
- Cai, Zongwu & Chen, Haiqiang & Liao, Xiaosai, 2023. "A new robust inference for predictive quantile regression," Journal of Econometrics, Elsevier, vol. 234(1), pages 227-250.
- Ren, Yu & Tu, Yundong & Yi, Yanping, 2019. "Balanced predictive regressions," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 118-142.
- Christis Katsouris, 2023. "Limit Theory under Network Dependence and Nonstationarity," Papers 2308.01418, arXiv.org, revised Aug 2023.
- Tu, Yundong & Liang, Han-Ying & Wang, Qiying, 2022. "Nonparametric inference for quantile cointegrations with stationary covariates," Journal of Econometrics, Elsevier, vol. 230(2), pages 453-482.
- Zongwu Cai & Haiqiang Chen & Xiaosai Liao, 2020. "A New Robust Inference for Predictive Quantile Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202002, University of Kansas, Department of Economics, revised Feb 2020.
- Andersen, Torben G. & Varneskov, Rasmus T., 2021.
"Consistent inference for predictive regressions in persistent economic systems,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
- Torben G. Andersen & Rasmus T. Varneskov, 2021. "Consistent Inference for Predictive Regressions in Persistent Economic Systems," NBER Working Papers 28568, National Bureau of Economic Research, Inc.
- Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2022.
"Testing for episodic predictability in stock returns,"
Journal of Econometrics, Elsevier, vol. 227(1), pages 85-113.
- Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo MM & Taylor, AM Robert, 2019. "Testing for Episodic Predictability in Stock Returns," Essex Finance Centre Working Papers 24137, University of Essex, Essex Business School.
- Paulo M.M. Rodrigues & Matei Demetrescu, 2019. "Testing for Episodic Predictability in Stock Returns," Working Papers w201906, Banco de Portugal, Economics and Research Department.
- Demetrescu, Matei & Rodrigues, Paulo M.M., 2022.
"Residual-augmented IVX predictive regression,"
Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
- Paulo M.M. Rodrigues & Matei Demetrescu, 2016. "Residual-augmented IVX predictive regression," Working Papers w201605, Banco de Portugal, Economics and Research Department.
- Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023.
"Extensions to IVX methods of inference for return predictability,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Paulo M.M. Rodrigues & Matei Demetrescu, 2021. "Extensions to IVX methods of inference for return predictability," Working Papers w202104, Banco de Portugal, Economics and Research Department.
- Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo MM & Taylor, AM Robert, 2022. "Extensions to IVX Methods of Inference for Return Predictability," Essex Finance Centre Working Papers 29779, University of Essex, Essex Business School.
- Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015.
"Nonparametric predictive regression,"
Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
- Ioannis Kasparis & Elena Andreou & Peter C.B. Phillips, 2012. "Nonparametric Predictive Regression," Cowles Foundation Discussion Papers 1878, Cowles Foundation for Research in Economics, Yale University.
- Ioannis Kasparis & Elena Andreou & Peter C. B. Phillips, 2012. "Nonparametric Predictive Regression," University of Cyprus Working Papers in Economics 14-2012, University of Cyprus Department of Economics.
- Andreou, Elena & Kasparis, Ioannis & Phillips, Peter C. B., 2013. "Nonparametric Predictive Regression," CEPR Discussion Papers 9570, C.E.P.R. Discussion Papers.
- Liyu Dou & Ulrich K. Müller, 2021. "Generalized Local‐to‐Unity Models," Econometrica, Econometric Society, vol. 89(4), pages 1825-1854, July.
- James A. Duffy & Jerome R. Simons, 2020. "Cointegration without Unit Roots," Papers 2002.08092, arXiv.org, revised Apr 2023.
More about this item
Keywords
IVX filtering; Local to unity; Multivariate predictors; Predictive regression; Quantile regression.;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2015-06-27 (Econometrics)
- NEP-FOR-2015-06-27 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:65150. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.