IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v221y2021i2p483-509.html
   My bibliography  Save this article

Revisiting the location of FDI in China: A panel data approach with heterogeneous shocks

Author

Listed:
  • Hou, Lei
  • Li, Kunpeng
  • Li, Qi
  • Ouyang, Min

Abstract

Foreign Direct Investment (FDI) is viewed as a primary driving force in shaping the global economy and receives particular attention in empirical studies. In this paper, we argue that many of the existing studies ignore endogeneities that arise from shocks in source and destination countries. To address this endogeneity issue, we take the “controlling through estimating” idea from the econometric literature and propose using panel data models with heterogeneous shocks to deal with it. We consider the quasi maximum likelihood (QML) method to estimate our proposed model. We investigate the asymptotic properties of the QML estimator, including the consistency, the asymptotic representation, and the limiting distribution. We also propose new statistics to test the validity of the use of traditional dynamic and static panel data estimation methods. Applying it to the location determinants of inward FDI in China, we find that the endogeneity issue does exist, and that controlling for heterogeneous shocks helps to improve the estimation results.

Suggested Citation

  • Hou, Lei & Li, Kunpeng & Li, Qi & Ouyang, Min, 2021. "Revisiting the location of FDI in China: A panel data approach with heterogeneous shocks," Journal of Econometrics, Elsevier, vol. 221(2), pages 483-509.
  • Handle: RePEc:eee:econom:v:221:y:2021:i:2:p:483-509
    DOI: 10.1016/j.jeconom.2020.04.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407620302426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2020.04.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    2. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    3. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Chirok Han & Peter C. B. Phillips, 2006. "GMM with Many Moment Conditions," Econometrica, Econometric Society, vol. 74(1), pages 147-192, January.
    6. Greenaway-McGrevy, Ryan & Han, Chirok & Sul, Donggyu, 2012. "Asymptotic distribution of factor augmented estimators for panel regression," Journal of Econometrics, Elsevier, vol. 169(1), pages 48-53.
    7. Holly, Sean & Pesaran, M. Hashem & Yamagata, Takashi, 2010. "A spatio-temporal model of house prices in the USA," Journal of Econometrics, Elsevier, vol. 158(1), pages 160-173, September.
    8. Moscone, F. & Tosetti, E., 2010. "Testing for error cross section independence with an application to US health expenditure," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 283-291, September.
    9. Jean Boivin & Marc P. Giannoni & Ilian Mihov, 2009. "Sticky Prices and Monetary Policy: Evidence from Disaggregated US Data," American Economic Review, American Economic Association, vol. 99(1), pages 350-384, March.
    10. Xuepeng Liu & Mary E. Lovely & Jan Ondrich, 2017. "The Location Decisions Of Foreign Investors In China: Untangling The Effect Of Wages Using A Control Function Approach," World Scientific Book Chapters, in: Mary E Lovely (ed.), International Economic Integration and Domestic Performance, chapter 11, pages 191-197, World Scientific Publishing Co. Pte. Ltd..
    11. Jushan Bai & Kunpeng Li & Lina Lu, 2016. "Estimation and Inference of FAVAR Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 620-641, October.
    12. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    13. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    14. Amiti, Mary & Smarzynska Javorcik, Beata, 2008. "Trade costs and location of foreign firms in China," Journal of Development Economics, Elsevier, vol. 85(1-2), pages 129-149, February.
    15. Gao, Ting, 2005. "Labor quality and the location of foreign direct investment: Evidence from China," China Economic Review, Elsevier, vol. 16(3), pages 274-292.
    16. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    17. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    18. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    19. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    20. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    21. Blyde, Juan & Molina, Danielken, 2015. "Logistic infrastructure and the international location of fragmented production," Journal of International Economics, Elsevier, vol. 95(2), pages 319-332.
    22. Noorbakhsh, Farhad & Paloni, Alberto & Youssef, Ali, 2001. "Human Capital and FDI Inflows to Developing Countries: New Empirical Evidence," World Development, Elsevier, vol. 29(9), pages 1593-1610, September.
    23. Nielsen, Bo Bernhard & Asmussen, Christian Geisler & Weatherall, Cecilie Dohlmann, 2017. "The location choice of foreign direct investments: Empirical evidence and methodological challenges," Journal of World Business, Elsevier, vol. 52(1), pages 62-82.
    24. Blanc-Brude, Frédéric & Cookson, Graham & Piesse, Jenifer & Strange, Roger, 2014. "The FDI location decision: Distance and the effects of spatial dependence," International Business Review, Elsevier, vol. 23(4), pages 797-810.
    25. Fung, K. C. & Iizaka, Hitomi & Parker, Stephen, 2002. "Determinants of U.S. and Japanese Direct Investment in China," Journal of Comparative Economics, Elsevier, vol. 30(3), pages 567-578, September.
    26. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    27. Du, Julan & Lu, Yi & Tao, Zhigang, 2008. "Economic institutions and FDI location choice: Evidence from US multinationals in China," Journal of Comparative Economics, Elsevier, vol. 36(3), pages 412-429, September.
    28. Bruce Blonigen, 2005. "A Review of the Empirical Literature on FDI Determinants," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 33(4), pages 383-403, December.
    29. Cheng, Leonard K. & Kwan, Yum K., 2000. "What are the determinants of the location of foreign direct investment? The Chinese experience," Journal of International Economics, Elsevier, vol. 51(2), pages 379-400, August.
    30. Matthew Cole & Robert Elliott & Jing Zhang, 2009. "Corruption, Governance and FDI Location in China: A Province-Level Analysis," Journal of Development Studies, Taylor & Francis Journals, vol. 45(9), pages 1494-1512.
    31. Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
    32. Jushan Bai & Kunpeng Li, 2016. "Maximum Likelihood Estimation and Inference for Approximate Factor Models of High Dimension," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 298-309, May.
    33. George Kapetanios & M. Hashem Pesaran, 2005. "Alternative Approaches to Estimation and Inference in Large Multifactor Panels: Small Sample Results with an Application to Modelling of Asset Returns," CESifo Working Paper Series 1416, CESifo.
    34. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    35. Kang, Sung Jin & Lee, Hong Shik, 2007. "The determinants of location choice of South Korean FDI in China," Japan and the World Economy, Elsevier, vol. 19(4), pages 441-460, December.
    36. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    37. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    38. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    39. Bai, Jushan & Kao, Chihwa & Ng, Serena, 2009. "Panel cointegration with global stochastic trends," Journal of Econometrics, Elsevier, vol. 149(1), pages 82-99, April.
    40. Carolina Castagnetti & Eduardo Rossi, 2013. "Euro Corporate Bond Risk Factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 372-391, April.
    41. Degui Li & Junhui Qian & Liangjun Su, 2016. "Panel Data Models With Interactive Fixed Effects and Multiple Structural Breaks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1804-1819, October.
    42. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    43. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    44. Ahn, Seung Chan & Hoon Lee, Young & Schmidt, Peter, 2001. "GMM estimation of linear panel data models with time-varying individual effects," Journal of Econometrics, Elsevier, vol. 101(2), pages 219-255, April.
    45. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    46. Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
    47. Zhang, Kevin Honglin & Markusen, James R., 1999. "Vertical multinationals and host-country characteristics," Journal of Development Economics, Elsevier, vol. 59(2), pages 233-252, August.
    48. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    49. George Kapetanios & M. Hashem Pesaran, 2005. "Alternative Approaches to Estimation and Inference in Large Multifactor Panels: Small Sample Results with an Application to Modelling of Asset Returns," CESifo Working Paper Series 1416, CESifo.
    50. Li, Kunpeng & Cui, Guowei & Lu, Lina, 2020. "Efficient estimation of heterogeneous coefficients in panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 216(2), pages 327-353.
    51. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bohan Chai & Junwei Gao & Lingying Pan & Yishu Chen, 2021. "Research on the Impact Factors of Green Economy of China—From the Perspective of System and Foreign Direct Investment," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    2. Chuop Theot Therith, 2022. "Effect of Investment Promotion through the Special Economic Zone Mechanism on the Distribution of FDI in Cambodia," Economies, MDPI, vol. 10(9), pages 1-21, September.
    3. Piotr Raźniak & György Csomós & Sławomir Dorocki & Anna Winiarczyk-Raźniak, 2021. "Exploring the Shifting Geographical Pattern of the Global Command-and-Control Function of Cities," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    4. Ando, Tomohiro & Li, Kunpeng & Lu, Lina, 2023. "A spatial panel quantile model with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 232(1), pages 191-213.
    5. Chen, Xinming & Fang, Tong, 2024. "Temperature anomalies and foreign direct investment: City-level evidence from China," International Review of Financial Analysis, Elsevier, vol. 91(C).
    6. Carles Manera & Eloi Serrano, 2022. "Management, Cooperatives and Sustainability: A New Methodological Proposal for a Holistic Analysis," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    7. Farris, Jarrad & Morgan, Stephen & Johnson, Michael E., 2022. "COVID-19 Working Paper: The COVID-19 Pandemic and Changes in Greenfield Foreign Direct Investment in Africa," USDA Miscellaneous 329078, United States Department of Agriculture.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsiao, Cheng, 2018. "Panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 645-673.
    2. Li, Kunpeng & Cui, Guowei & Lu, Lina, 2020. "Efficient estimation of heterogeneous coefficients in panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 216(2), pages 327-353.
    3. Hong, Shengjie & Su, Liangjun & Jiang, Tao, 2023. "Profile GMM estimation of panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 927-948.
    4. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    5. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    6. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 63/13, Institute for Fiscal Studies.
    7. Bai, Jushan & Li, Kunpeng, 2021. "Dynamic spatial panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 224(1), pages 134-160.
    8. Juodis, Artūras & Sarafidis, Vasilis, 2022. "An incidental parameters free inference approach for panels with common shocks," Journal of Econometrics, Elsevier, vol. 229(1), pages 19-54.
    9. Hyungsik Roger Moon & Martin Weidner, 2018. "Nuclear Norm Regularized Estimation of Panel Regression Models," Papers 1810.10987, arXiv.org, revised Jun 2023.
    10. Shi, Wei & Lee, Lung-fei, 2018. "A spatial panel data model with time varying endogenous weights matrices and common factors," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 6-34.
    11. Ye, Xiaoqing & Xu, Juan & Wu, Xiangjun, 2018. "Estimation of an unbalanced panel data Tobit model with interactive effects," Journal of choice modelling, Elsevier, vol. 28(C), pages 108-123.
    12. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    13. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).
    14. Evan Totty, 2017. "The Effect Of Minimum Wages On Employment: A Factor Model Approach," Economic Inquiry, Western Economic Association International, vol. 55(4), pages 1712-1737, October.
    15. Wang,Dieter, 2021. "Natural Capital and Sovereign Bonds," Policy Research Working Paper Series 9606, The World Bank.
    16. Hugo Freeman & Martin Weidner, 2021. "Linear Panel Regressions with Two-Way Unobserved Heterogeneity," Papers 2109.11911, arXiv.org, revised Aug 2022.
    17. Joakim Westerlund, 2020. "A cross‐section average‐based principal components approach for fixed‐T panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 776-785, September.
    18. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    19. Georg Keilbar & Juan M. Rodriguez-Poo & Alexandra Soberon & Weining Wang, 2022. "A semiparametric approach for interactive fixed effects panel data models," Papers 2201.11482, arXiv.org, revised Mar 2023.
    20. Hugo Freeman & Martin Weidner, 2021. "Linear panel regressions with two-way unobserved heterogeneity," CeMMAP working papers CWP39/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:221:y:2021:i:2:p:483-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.