IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v213y2019i1p261-280.html
   My bibliography  Save this article

Predictive quantile regressions under persistence and conditional heteroskedasticity

Author

Listed:
  • Fan, Rui
  • Lee, Ji Hyung

Abstract

This paper provides an improved inference for predictive quantile regressions with persistent predictors and conditionally heteroskedastic errors. The confidence intervals based on conventional quantile regression techniques are not valid when predictors are highly persistent. Moreover, the conditional heteroskedasticity introduces rather complicated nuisance parameters in the limit theory, whose estimation errors can be another source of distortion. We propose a size-corrected bootstrap inference thereby avoiding the nuisance parameter estimation. The bootstrap consistency is shown even with the nonstationary predictors and conditionally heteroskedastic innovations. Monte Carlo simulation confirms the significantly better test size performances of the new methods. The empirical exercises on stock return quantile predictability are revisited.

Suggested Citation

  • Fan, Rui & Lee, Ji Hyung, 2019. "Predictive quantile regressions under persistence and conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(1), pages 261-280.
  • Handle: RePEc:eee:econom:v:213:y:2019:i:1:p:261-280
    DOI: 10.1016/j.jeconom.2019.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407619300697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2019.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Xiao, Zhijie & Koenker, Roger, 2009. "Conditional Quantile Estimation for Generalized Autoregressive Conditional Heteroscedasticity Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1696-1712.
    3. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    4. Xiao, Zhijie, 2009. "Quantile cointegrating regression," Journal of Econometrics, Elsevier, vol. 150(2), pages 248-260, June.
    5. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    6. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(5), pages 793-813, December.
    7. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    8. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    9. Phillips, Peter C.B. & Lee, Ji Hyung, 2016. "Robust econometric inference with mixed integrated and mildly explosive regressors," Journal of Econometrics, Elsevier, vol. 192(2), pages 433-450.
    10. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
    11. Portnoy, Stephen, 1991. "Asymptotic behavior of regression quantiles in non-stationary, dependent cases," Journal of Multivariate Analysis, Elsevier, vol. 38(1), pages 100-113, July.
    12. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    13. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    14. Choi, Yongok & Jacewitz, Stefan & Park, Joon Y., 2016. "A reexamination of stock return predictability," Journal of Econometrics, Elsevier, vol. 192(1), pages 168-189.
    15. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    16. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2023. "Unified Inference for Dynamic Quantile Predictive Regression," Papers 2309.14160, arXiv.org, revised Nov 2023.
    2. Wang, Cindy S.H. & Fan, Rui & Xie, Yiqiang, 2023. "Market systemic risk, predictability and macroeconomics news," Finance Research Letters, Elsevier, vol. 56(C).
    3. Zongwu Cai & Haiqiang Chen & Xiaosai Liao, 2020. "A New Robust Inference for Predictive Quantile Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202002, University of Kansas, Department of Economics, revised Feb 2020.
    4. Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.
    5. Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
    6. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Extensions to IVX methods of inference for return predictability," Journal of Econometrics, Elsevier, vol. 237(2).
    7. Grobys, Klaus & Junttila, Juha, 2021. "Speculation and lottery-like demand in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    8. Lee, Ji Hyung & Shin, Youngki, 2023. "Complete Subset Averaging For Quantile Regressions," Econometric Theory, Cambridge University Press, vol. 39(1), pages 146-188, February.
    9. Chaohua Dong & Jiti Gao & Yundong Tu & Bin Peng, 2023. "Robust M-Estimation for Additive Single-Index Cointegrating Time Series Models," Papers 2301.06631, arXiv.org.
    10. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Liu, Yanbo & Phillips, Peter C.B., 2023. "Robust inference with stochastic local unit root regressors in predictive regressions," Journal of Econometrics, Elsevier, vol. 235(2), pages 563-591.
    12. Christis Katsouris, 2023. "Estimating Conditional Value-at-Risk with Nonstationary Quantile Predictive Regression Models," Papers 2311.08218, arXiv.org, revised Apr 2024.
    13. Lee, Ji Hyung & Linton, Oliver & Whang, Yoon-Jae, 2020. "Quantilograms Under Strong Dependence," Econometric Theory, Cambridge University Press, vol. 36(3), pages 457-487, June.
    14. Alex Maynard & Katsumi Shimotsu & Nina Kuriyama, 2023. "Inference in Predictive Quantile Regressions," Papers 2306.00296, arXiv.org, revised May 2024.
    15. Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2021. "Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice," Monash Econometrics and Business Statistics Working Papers 18/21, Monash University, Department of Econometrics and Business Statistics.
    16. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
    17. Yannick Hoga, 2024. "Persistence-Robust Break Detection in Predictive Quantile and CoVaR Regressions," Papers 2410.05861, arXiv.org.
    18. Pitarakis, Jean-Yves, 2019. "Predictive Regressions," UC3M Working papers. Economics 28554, Universidad Carlos III de Madrid. Departamento de Economía.
    19. Cho, Dooyeon, 2021. "On the predictability of the distribution of excess returns in currency markets," International Journal of Forecasting, Elsevier, vol. 37(2), pages 511-530.
    20. Zhan Gao & Ji Hyung Lee & Ziwei Mei & Zhentao Shi, 2024. "Econometric Inference for High Dimensional Predictive Regressions," Papers 2409.10030, arXiv.org, revised Nov 2024.
    21. Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2021. "Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice," Papers 2111.02023, arXiv.org.
    22. Tu, Yundong & Liang, Han-Ying & Wang, Qiying, 2022. "Nonparametric inference for quantile cointegrations with stationary covariates," Journal of Econometrics, Elsevier, vol. 230(2), pages 453-482.
    23. Xiaosai Liao & Xinjue Li & Qingliang Fan, 2024. "Robust Bond Risk Premia Predictability Test in the Quantiles," Papers 2410.03557, arXiv.org.
    24. Cai, Zongwu & Chen, Haiqiang & Liao, Xiaosai, 2023. "A new robust inference for predictive quantile regression," Journal of Econometrics, Elsevier, vol. 234(1), pages 227-250.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Yundong & Liang, Han-Ying & Wang, Qiying, 2022. "Nonparametric inference for quantile cointegrations with stationary covariates," Journal of Econometrics, Elsevier, vol. 230(2), pages 453-482.
    2. Cai, Zongwu & Chen, Haiqiang & Liao, Xiaosai, 2023. "A new robust inference for predictive quantile regression," Journal of Econometrics, Elsevier, vol. 234(1), pages 227-250.
    3. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
    4. Zongwu Cai & Haiqiang Chen & Xiaosai Liao, 2020. "A New Robust Inference for Predictive Quantile Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202002, University of Kansas, Department of Economics, revised Feb 2020.
    5. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    6. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).
    7. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
    8. Chaohua Dong & Jiti Gao & Yundong Tu & Bin Peng, 2023. "Robust M-Estimation for Additive Single-Index Cointegrating Time Series Models," Papers 2301.06631, arXiv.org.
    9. Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2021. "Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice," Papers 2111.02023, arXiv.org.
    10. Liu, Yanbo & Phillips, Peter C.B., 2023. "Robust inference with stochastic local unit root regressors in predictive regressions," Journal of Econometrics, Elsevier, vol. 235(2), pages 563-591.
    11. Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2021. "Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice," Monash Econometrics and Business Statistics Working Papers 18/21, Monash University, Department of Econometrics and Business Statistics.
    12. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    13. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    14. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    15. Zongwu Cai & Seong Yeon Chang, 2018. "A New Test In A Predictive Regression with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201811, University of Kansas, Department of Economics, revised Dec 2018.
    16. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    17. Alex Maynard & Katsumi Shimotsu & Nina Kuriyama, 2023. "Inference in Predictive Quantile Regressions," Papers 2306.00296, arXiv.org, revised May 2024.
    18. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
    19. Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
    20. Zernov, Serguei & Zinde-Walsh, Victoria & Galbraith, John W., 2009. "Asymptotics for estimation of quantile regressions with truncated infinite-dimensional processes," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 497-508, March.

    More about this item

    Keywords

    α-mixing process; Conditional heteroskedasticity; Moving block bootstrap; Predictive regression; Quantile regression;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:213:y:2019:i:1:p:261-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.