IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/1936.html
   My bibliography  Save this paper

Quantilograms under Strong Dependence

Author

Listed:
  • Lee, L.
  • Linton, O.
  • Whang, Y-J.

Abstract

We develop the limit theory of the quantilogram and cross-quantilogram under long memory. We establish the sub-root-n central limit theorems for quantilograms that depend on nuisance parameters. We propose a moving block bootstrap (MBB) procedure for inference and we establish its consistency thereby enabling a consistent confidence interval construction for the quantilograms. The newly developed reduction principles for the quantilograms serve as the main technical devices used to derive the asymptotics and establish the validity of MBB. We report some simulation evidence that our methods work satisfactorily. We apply our method to quantile predictive relations between financial returns and long-memory predictors.

Suggested Citation

  • Lee, L. & Linton, O. & Whang, Y-J., 0000. "Quantilograms under Strong Dependence," Cambridge Working Papers in Economics 1936, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:1936
    Note: obl20
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe1936.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    3. Roger Koenker, 2017. "Quantile Regression: 40 Years On," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 155-176, September.
    4. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    5. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    6. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    7. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    8. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Bollerslev, Tim & Osterrieder, Daniela & Sizova, Natalia & Tauchen, George, 2013. "Risk and return: Long-run relations, fractional cointegration, and return predictability," Journal of Financial Economics, Elsevier, vol. 108(2), pages 409-424.
    10. Beutner, Eric & Wu, Wei Biao & Zähle, Henryk, 2012. "Asymptotics for statistical functionals of long-memory sequences," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 910-929.
    11. Holger Dette & Marc Hallin & Tobias Kley & Stanislav Volgushev, 2011. "Of Copulas, Quantiles, Ranks and Spectra - An L1-Approach to Spectral Analysis," Working Papers ECARES ECARES 2011-038, ULB -- Universite Libre de Bruxelles.
    12. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    13. Linton, O. & Whang, Yoon-Jae, 2007. "The quantilogram: With an application to evaluating directional predictability," Journal of Econometrics, Elsevier, vol. 141(1), pages 250-282, November.
    14. Tsay, Wen-Jen & Chung, Ching-Fan, 2000. "The spurious regression of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 96(1), pages 155-182, May.
    15. Li, Ta-Hsin, 2008. "Laplace Periodogram for Time Series Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 757-768, June.
    16. Ta-Hsin Li, 2012. "Quantile Periodograms," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 765-776, June.
    17. Xiaofeng Shao, 2015. "Self-Normalization for Time Series: A Review of Recent Developments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1797-1817, December.
    18. Fan, Rui & Lee, Ji Hyung, 2019. "Predictive quantile regressions under persistence and conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(1), pages 261-280.
    19. Anna Mikusheva, 2007. "Uniform Inference in Autoregressive Models," Econometrica, Econometric Society, vol. 75(5), pages 1411-1452, September.
    20. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    2. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    3. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    4. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    5. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    6. Yaeji Lim & Hee-Seok Oh, 2022. "Quantile spectral analysis of long-memory processes," Empirical Economics, Springer, vol. 62(3), pages 1245-1266, March.
    7. Alex Maynard & Katsumi Shimotsu & Nina Kuriyama, 2023. "Inference in Predictive Quantile Regressions," Papers 2306.00296, arXiv.org, revised May 2024.
    8. Yannick Hoga, 2024. "Persistence-Robust Break Detection in Predictive Quantile and CoVaR Regressions," Papers 2410.05861, arXiv.org.
    9. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    10. Thilo A. Schmitt & Rudi Schafer & Holger Dette & Thomas Guhr, 2015. "Quantile Correlations: Uncovering temporal dependencies in financial time series," Papers 1507.04990, arXiv.org.
    11. Chaohua Dong & Jiti Gao & Yundong Tu & Bin Peng, 2023. "Robust M-Estimation for Additive Single-Index Cointegrating Time Series Models," Papers 2301.06631, arXiv.org.
    12. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    13. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).
    14. Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2021. "Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice," Papers 2111.02023, arXiv.org.
    15. Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2021. "Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice," Monash Econometrics and Business Statistics Working Papers 18/21, Monash University, Department of Econometrics and Business Statistics.
    16. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
    17. Yan Liu, 2017. "Statistical inference for quantiles in the frequency domain," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 369-386, October.
    18. Stefan Birr & Holger Dette & Marc Hallin & Tobias Kley & Stanislav Volgushev, 2016. "On Wigner-Ville Spectra and the Unicity of Time-Varying Quantile-Based Spectral Densities," Working Papers ECARES ECARES 2016-38, ULB -- Universite Libre de Bruxelles.
    19. Thilo A. Schmitt & Rudi Schäfer & Holger Dette & Thomas Guhr, 2015. "Quantile Correlations: Uncovering Temporal Dependencies In Financial Time Series," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1-16, November.
    20. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.

    More about this item

    Keywords

    Long Memory; Moving Block Bootstrap; Nonlinear Dependence; Quantilogram and Cross-Quantilgoram; Reduction Principle;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.