IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v205y2018i2p448-469.html
   My bibliography  Save this article

Bounds on treatment effects on transitions

Author

Listed:
  • Vikström, Johan
  • Ridder, Geert
  • Weidner, Martin

Abstract

This paper considers the identification of treatment effects on conditional transition probabilities. We show that even under random assignment only the instantaneous average treatment effect is point identified. Since treated and control units drop out at different rates, randomization only ensures the comparability of treatment and controls at the time of randomization, so that long-run average treatment effects are not point identified. Instead, we derive bounds on these average effects. Our bounds do not impose (semi)parametric restrictions, for example, proportional hazards. We also explore assumptions such as monotone treatment response, common shocks and positively correlated outcomes that tighten the bounds.

Suggested Citation

  • Vikström, Johan & Ridder, Geert & Weidner, Martin, 2018. "Bounds on treatment effects on transitions," Journal of Econometrics, Elsevier, vol. 205(2), pages 448-469.
  • Handle: RePEc:eee:econom:v:205:y:2018:i:2:p:448-469
    DOI: 10.1016/j.jeconom.2017.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407618300605
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2017.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrews, Donald W.K. & Guggenberger, Patrik, 2009. "Validity Of Subsampling And “Plug-In Asymptotic” Inference For Parameters Defined By Moment Inequalities," Econometric Theory, Cambridge University Press, vol. 25(3), pages 669-709, June.
    2. Charles F. Manski, 1997. "Monotone Treatment Response," Econometrica, Econometric Society, vol. 65(6), pages 1311-1334, November.
    3. Woodbury, Stephen A & Spiegelman, Robert G, 1987. "Bonuses to Workers and Employers to Reduce Unemployment: Randomized Trials in Illinois," American Economic Review, American Economic Association, vol. 77(4), pages 513-530, September.
    4. Heckman, James J. & Navarro, Salvador, 2007. "Dynamic discrete choice and dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 136(2), pages 341-396, February.
    5. Bijwaard, Govert E. & Ridder, Geert, 2005. "Correcting for selective compliance in a re-employment bonus experiment," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 77-111.
    6. Meyer, Bruce D, 1996. "What Have We Learned from the Illinois Reemployment Bonus Experiment?," Journal of Labor Economics, University of Chicago Press, vol. 14(1), pages 26-51, January.
    7. Ham, John C & LaLonde, Robert J, 1996. "The Effect of Sample Selection and Initial Conditions in Duration Models: Evidence from Experimental Data on Training," Econometrica, Econometric Society, vol. 64(1), pages 175-205, January.
    8. Fredriksson, Peter & Johansson, Per, 2008. "Dynamic Treatment Assignment," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 435-445.
    9. Gerard J. van den Berg, 1990. "Nonstationarity in Job Search Theory," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(2), pages 255-277.
    10. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
    11. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    12. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    13. Joseph P. Romano & Azeem M. Shaikh, 2010. "Inference for the Identified Set in Partially Identified Econometric Models," Econometrica, Econometric Society, vol. 78(1), pages 169-211, January.
    14. Murphy, S. A. & Bingham, D., 2009. "Screening Experiments for Developing Dynamic Treatment Regimes," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 391-408.
    15. Jochen Kluve & David Card & Michael Fertig & Marek Góra & Lena Jacobi & Peter Jensen & Reelika Leetmaa & Leonhard Nima & Eleonora Patacchini & Sandra Schaffner & Christoph M. Schmidt & Bas Klaauw & An, 2007. "Active Labor Market Policies in Europe," Springer Books, Springer, number 978-3-540-48558-2, December.
    16. Abbring, Jaap H. & Heckman, James J., 2007. "Econometric Evaluation of Social Programs, Part III: Distributional Treatment Effects, Dynamic Treatment Effects, Dynamic Discrete Choice, and General Equilibrium Policy Evaluation," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 72, Elsevier.
    17. Card, David & Sullivan, Daniel G, 1988. "Measuring the Effect of Subsidized Training Programs on Movements in and out of Employment," Econometrica, Econometric Society, vol. 56(3), pages 497-530, May.
    18. Donald W. K. Andrews & Panle Jia Barwick, 2012. "Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure," Econometrica, Econometric Society, vol. 80(6), pages 2805-2826, November.
    19. Liliane Bonnal & Denis Fougère & Anne Sérandon, 1997. "Evaluating the Impact of French Employment Policies on Individual Labour Market Histories," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 683-713.
    20. Gritz, R. Mark, 1993. "The impact of training on the frequency and duration of employment," Journal of Econometrics, Elsevier, vol. 57(1-3), pages 21-51.
    21. Ridder, G, 1986. "An Event History Approach to the Evaluation of Training, Recruitment and Employment Programmes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(2), pages 109-126, April.
    22. Chris Elbers & Geert Ridder, 1982. "True and Spurious Duration Dependence: The Identifiability of the Proportional Hazard Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 49(3), pages 403-409.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Sukjin, 2021. "Identification in nonparametric models for dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 132-147.
    2. Le Barbanchon, Thomas, 2016. "The effect of the potential duration of unemployment benefits on unemployment exits to work and match quality in France," Labour Economics, Elsevier, vol. 42(C), pages 16-29.
    3. Vikström, Johan & Rosholm, Michael & Svarer, Michael, 2013. "The effectiveness of active labor market policies: Evidence from a social experiment using non-parametric bounds," Labour Economics, Elsevier, vol. 24(C), pages 58-67.
    4. Fitzenberger, Bernd & Osikominu, Aderonke & Paul, Marie, 2023. "The effects of training incidence and planned training duration on labor market transitions," Journal of Econometrics, Elsevier, vol. 235(1), pages 256-279.
    5. Vikström, Johan & Rosholm, Michael & Svarer, Michael, 2011. "The relative efficiency of active labour market policy: evidence from a social experiment and non-parametric methods," Working Paper Series 2011:7, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    6. Yechan Park & Yuya Sasaki, 2024. "The Informativeness of Combined Experimental and Observational Data under Dynamic Selection," Papers 2403.16177, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johan Vikström & Geert Ridder & Martin Weidner, 2016. "Bounds On Treatment Effects On Transitions," CeMMAP working papers 17/16, Institute for Fiscal Studies.
    2. Johan Vikström & Geert Ridder & Martin Weidner, 2015. "Bounds on treatment effects on transitions," CeMMAP working papers 01/15, Institute for Fiscal Studies.
    3. Jaap Abbring & James Heckman, 2008. "Dynamic policy analysis," CeMMAP working papers CWP05/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    5. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2018. "Testing For A General Class Of Functional Inequalities," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1018-1064, October.
    6. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    7. Kyungchul Song, 2009. "Point Decisions for Interval-Identified Parameters," PIER Working Paper Archive 09-036, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    8. Picchio, Matteo & van Ours, Jan C., 2013. "Retaining through training even for older workers," Economics of Education Review, Elsevier, vol. 32(C), pages 29-48.
    9. Nicky L. Grant & Richard J. Smith, 2018. "GEL-based inference with unconditional moment inequality restrictions," CeMMAP working papers CWP23/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    11. Federico A. Bugni & Ivan A. Canay & Xiaoxia Shi, 2014. "Inference for functions of partially identified parameters in moment inequality models," CeMMAP working papers 22/14, Institute for Fiscal Studies.
    12. Aderonke Osikominu, 2013. "Quick Job Entry or Long-Term Human Capital Development? The Dynamic Effects of Alternative Training Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(1), pages 313-342.
    13. Tsunao Okumura & Emiko Usui, 2014. "Concave‐monotone treatment response and monotone treatment selection: With an application to the returns to schooling," Quantitative Economics, Econometric Society, vol. 5, pages 175-194, March.
    14. Ivan A. Canay & Azeem M. Shaikh, 2016. "Practical and theoretical advances in inference for partially identified models," CeMMAP working papers 05/16, Institute for Fiscal Studies.
    15. Donald W. K. Andrews & Panle Jia Barwick, 2012. "Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure," Econometrica, Econometric Society, vol. 80(6), pages 2805-2826, November.
    16. Chen, Le-Yu & Szroeter, Jerzy, 2014. "Testing multiple inequality hypotheses: A smoothed indicator approach," Journal of Econometrics, Elsevier, vol. 178(P3), pages 678-693.
    17. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    18. Magnac, Thierry, 2013. "Identification partielle : méthodes et conséquences pour les applications empiriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 233-258, Décembre.
    19. Francesca Molinari, 2020. "Microeconometrics with Partial Identification," Papers 2004.11751, arXiv.org.
    20. Abbring, Jaap H & van den Berg, Gerard J, 2005. "Social experiments and intrumental variables with duration outcomes," Working Paper Series 2005:11, IFAU - Institute for Evaluation of Labour Market and Education Policy.

    More about this item

    Keywords

    Partial identification; Duration model; Randomized experiment; Treatment effect;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:205:y:2018:i:2:p:448-469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.