IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1805.09397.html
   My bibliography  Save this paper

Identification in Nonparametric Models for Dynamic Treatment Effects

Author

Listed:
  • Sukjin Han

Abstract

This paper develops a nonparametric model that represents how sequences of outcomes and treatment choices influence one another in a dynamic manner. In this setting, we are interested in identifying the average outcome for individuals in each period, had a particular treatment sequence been assigned. The identification of this quantity allows us to identify the average treatment effects (ATE's) and the ATE's on transitions, as well as the optimal treatment regimes, namely, the regimes that maximize the (weighted) sum of the average potential outcomes, possibly less the cost of the treatments. The main contribution of this paper is to relax the sequential randomization assumption widely used in the biostatistics literature by introducing a flexible choice-theoretic framework for a sequence of endogenous treatments. We show that the parameters of interest are identified under each period's two-way exclusion restriction, i.e., with instruments excluded from the outcome-determining process and other exogenous variables excluded from the treatment-selection process. We also consider partial identification in the case where the latter variables are not available. Lastly, we extend our results to a setting where treatments do not appear in every period.

Suggested Citation

  • Sukjin Han, 2018. "Identification in Nonparametric Models for Dynamic Treatment Effects," Papers 1805.09397, arXiv.org, revised Jan 2019.
  • Handle: RePEc:arx:papers:1805.09397
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1805.09397
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    2. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    3. Vikström, Johan & Ridder, Geert & Weidner, Martin, 2018. "Bounds on treatment effects on transitions," Journal of Econometrics, Elsevier, vol. 205(2), pages 448-469.
    4. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts of American Males," Journal of Political Economy, University of Chicago Press, vol. 106(2), pages 262-333, April.
    5. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    6. Murphy S.A. & van der Laan M.J. & Robins J.M., 2001. "Marginal Mean Models for Dynamic Regimes," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1410-1423, December.
    7. Flavio Cunha & James J. Heckman & Salvador Navarro, 2007. "The Identification And Economic Content Of Ordered Choice Models With Stochastic Thresholds," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1273-1309, November.
    8. Abbring, Jaap H. & Heckman, James J., 2007. "Econometric Evaluation of Social Programs, Part III: Distributional Treatment Effects, Dynamic Treatment Effects, Dynamic Discrete Choice, and General Equilibrium Policy Evaluation," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 72, Elsevier.
    9. Heckman, James J. & Humphries, John Eric & Veramendi, Gregory, 2016. "Dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 191(2), pages 276-292.
    10. James Robins & Andrea Rotnitzky, 2004. "Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models," Biometrika, Biometrika Trust, vol. 91(4), pages 763-783, December.
    11. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts," NBER Working Papers 6385, National Bureau of Economic Research, Inc.
    12. Heckman, James J. & Navarro, Salvador, 2007. "Dynamic discrete choice and dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 136(2), pages 341-396, February.
    13. Jason R. Blevins, 2014. "Nonparametric identification of dynamic decision processes with discrete and continuous choices," Quantitative Economics, Econometric Society, vol. 5(3), pages 531-554, November.
    14. Brantly Callaway & Pedro H. C. Sant'Anna, 2018. "Difference-in-Differences with Multiple Time Periods and an Application on the Minimum Wage and Employment," DETU Working Papers 1804, Department of Economics, Temple University.
    15. Machado, Cecilia & Shaikh, Azeem M. & Vytlacil, Edward J., 2019. "Instrumental variables and the sign of the average treatment effect," Journal of Econometrics, Elsevier, vol. 212(2), pages 522-555.
    16. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    17. Alexander Torgovitsky, 2019. "Nonparametric Inference on State Dependence in Unemployment," Econometrica, Econometric Society, vol. 87(5), pages 1475-1505, September.
    18. Flavio Cunha & James J. Heckman & Salvador Navarro, 2007. "The Identification & Economic Content of Ordered Choice Models with Stochastic Thresholds," Working Papers 200726, Geary Institute, University College Dublin.
    19. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    20. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    21. Azeem M. Shaikh & Edward J. Vytlacil, 2011. "Partial Identification in Triangular Systems of Equations With Binary Dependent Variables," Econometrica, Econometric Society, vol. 79(3), pages 949-955, May.
    22. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    23. Sasaki, Yuya, 2015. "Heterogeneity and selection in dynamic panel data," Journal of Econometrics, Elsevier, vol. 188(1), pages 236-249.
    24. Fredriksson, Peter & Johansson, Per, 2008. "Dynamic Treatment Assignment," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 435-445.
    25. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    26. Sung Jae Jun & Joris Pinkse & Haiqing Xu & Neşe Yıldız, 2016. "Multiple Discrete Endogenous Variables in Weakly-Separable Triangular Models," Econometrics, MDPI, vol. 4(1), pages 1-21, February.
    27. Edward Vytlacil & Nese Yildiz, 2007. "Dummy Endogenous Variables in Weakly Separable Models," Econometrica, Econometric Society, vol. 75(3), pages 757-779, May.
    28. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    29. Jason Abrevaya & Jerry A. Hausman & Shakeeb Khan, 2010. "Testing for Causal Effects in a Generalized Regression Model With Endogenous Regressors," Econometrica, Econometric Society, vol. 78(6), pages 2043-2061, November.
    30. Jaap H. Abbring & Gerard J. van den Berg, 2003. "The Nonparametric Identification of Treatment Effects in Duration Models," Econometrica, Econometric Society, vol. 71(5), pages 1491-1517, September.
    31. Vikström, Johan & Ridder, Geert & Weidner, Martin, 2018. "Bounds on treatment effects on transitions," Journal of Econometrics, Elsevier, vol. 205(2), pages 448-469.
    32. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    33. Jorge Balat & Sukjin Han, 2018. "Multiple Treatments with Strategic Interaction," Papers 1805.08275, arXiv.org, revised Sep 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fitzenberger, Bernd & Osikominu, Aderonke & Paul, Marie, 2023. "The effects of training incidence and planned training duration on labor market transitions," Journal of Econometrics, Elsevier, vol. 235(1), pages 256-279.
    2. Juliano Assunção & Robert McMillan & Joshua Murphy & Eduardo Souza-Rodrigues, 2019. "Optimal Environmental Targeting in the Amazon Rainforest," NBER Working Papers 25636, National Bureau of Economic Research, Inc.
    3. Michelle Marcus & Pedro H. C. Sant’Anna, 2021. "The Role of Parallel Trends in Event Study Settings: An Application to Environmental Economics," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(2), pages 235-275.
    4. Pedro Picchetti, 2023. "Identification in Endogenous Sequential Treatment Regimes," Papers 2311.18555, arXiv.org.
    5. Balat, Jorge F. & Han, Sukjin, 2023. "Multiple treatments with strategic substitutes," Journal of Econometrics, Elsevier, vol. 234(2), pages 732-757.
    6. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    7. Hervé Cardot & Antonio Musolesi, 2021. "Zero-inflated regression for unobserved effects panel data models and difference-in-differences estimation," SEEDS Working Papers 1121, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Dec 2021.
    8. Iavor Bojinov & Ashesh Rambachan & Neil Shephard, 2021. "Panel experiments and dynamic causal effects: A finite population perspective," Quantitative Economics, Econometric Society, vol. 12(4), pages 1171-1196, November.
    9. Ravi B. Sojitra & Vasilis Syrgkanis, 2024. "Dynamic Local Average Treatment Effects," Papers 2405.01463, arXiv.org, revised May 2024.
    10. Han, Sukjin & Yang, Shenshen, 2024. "A computational approach to identification of treatment effects for policy evaluation," Journal of Econometrics, Elsevier, vol. 240(1).
    11. Juliano Assuncao & Robert McMillan & Joshua Murphy & Eduardo Souza-Rodrigues, 2019. "Optimal Environmental Targeting in the Amazon Rainforest," Working Papers tecipa-631, University of Toronto, Department of Economics.
    12. Kyunghoon Ban & D'esir'e K'edagni, 2024. "$\texttt{rdid}$ and $\texttt{rdidstag}$: Stata commands for robust difference-in-differences," Papers 2410.05212, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heckman, James J. & Humphries, John Eric & Veramendi, Gregory, 2016. "Dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 191(2), pages 276-292.
    2. Jaap Abbring & James Heckman, 2008. "Dynamic policy analysis," CeMMAP working papers CWP05/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    4. Jorge Rodríguez & Fernando Saltiel & Sergio Urzúa, 2022. "Dynamic treatment effects of job training," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 242-269, March.
    5. Jaap H. Abbring, 2010. "Identification of Dynamic Discrete Choice Models," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 367-394, September.
    6. Fitzenberger, Bernd & Osikominu, Aderonke & Paul, Marie, 2023. "The effects of training incidence and planned training duration on labor market transitions," Journal of Econometrics, Elsevier, vol. 235(1), pages 256-279.
    7. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    8. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    9. Tatiana Komarova & William Matcham, 2022. "Multivariate ordered discrete response models," Papers 2205.05779, arXiv.org, revised Mar 2023.
    10. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    11. Stefan Boes, 2009. "Partial Identification of Discrete Counterfactual Distributions with Sequential Update of Information," SOI - Working Papers 0918, Socioeconomic Institute - University of Zurich.
    12. Feng, Junlong, 2024. "Matching points: Supplementing instruments with covariates in triangular models," Journal of Econometrics, Elsevier, vol. 238(1).
    13. Biewen, Martin & (neé Tapalaga), Madalina Thiele, 2020. "Early tracking, academic vs. vocational training, and the value of ‘second-chance’ options," Labour Economics, Elsevier, vol. 66(C).
    14. Bhuller, Manudeep & Sigstad, Henrik, 2024. "2SLS with multiple treatments," Journal of Econometrics, Elsevier, vol. 242(1).
    15. Ashesh Rambachan & Neil Shephard, 2019. "Econometric analysis of potential outcomes time series: instruments, shocks, linearity and the causal response function," Papers 1903.01637, arXiv.org, revised Feb 2020.
    16. Han, Sukjin & Yang, Shenshen, 2024. "A computational approach to identification of treatment effects for policy evaluation," Journal of Econometrics, Elsevier, vol. 240(1).
    17. Philip Marx & Elie Tamer & Xun Tang, 2022. "Parallel Trends and Dynamic Choices," Papers 2207.06564, arXiv.org, revised Aug 2023.
    18. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    20. Eli Ben‐Michael & Avi Feller & Jesse Rothstein, 2022. "Synthetic controls with staggered adoption," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 351-381, April.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1805.09397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.