IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v34y2013i5p552-561.html
   My bibliography  Save this article

Continuous-time autoregressive moving average processes in discrete time: representation and embeddability

Author

Listed:
  • Michael A. Thornton
  • Marcus J. Chambers

Abstract

No abstract is available for this item.

Suggested Citation

  • Michael A. Thornton & Marcus J. Chambers, 2013. "Continuous-time autoregressive moving average processes in discrete time: representation and embeddability," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 552-561, September.
  • Handle: RePEc:bla:jtsera:v:34:y:2013:i:5:p:552-561
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jtsa.12030
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chambers, Marcus J., 2009. "Discrete Time Representations Of Cointegrated Continuous Time Models With Mixed Sample Data," Econometric Theory, Cambridge University Press, vol. 25(4), pages 1030-1049, August.
    2. Roderick McCrorie, J., 2001. "Interpolating exogenous variables in continuous time dynamic models," Journal of Economic Dynamics and Control, Elsevier, vol. 25(9), pages 1399-1427, September.
    3. Peter J. Brockwell & Vincenzo Ferrazzano & Claudia Klüppelberg, 2012. "High‐frequency sampling of a continuous‐time ARMA process," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 152-160, January.
    4. Bergstrom, A. R., 1986. "The Estimation of Open Higher-Order Continuous Time Dynamic Models with Mixed Stock and Flow Data," Econometric Theory, Cambridge University Press, vol. 2(3), pages 350-373, December.
    5. Bergstrom, A.R., 1997. "Gaussian Estimation of Mixed-Order Continuous-Time Dynamic Models with Unobservable Stochastic Trends from Mixed Stock and Flow Data," Econometric Theory, Cambridge University Press, vol. 13(4), pages 467-505, February.
    6. Harvey, A. C. & Stock, James H., 1985. "The Estimation of Higher-Order Continuous Time Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 1(1), pages 97-117, April.
    7. Simos, Theodore, 1996. "Gaussian Estimation of a Continuous Time Dynamic Model with Common Stochastic Trends," Econometric Theory, Cambridge University Press, vol. 12(2), pages 361-373, June.
    8. McCrorie, J. Roderick, 2000. "Deriving The Exact Discrete Analog Of A Continuous Time System," Econometric Theory, Cambridge University Press, vol. 16(6), pages 998-1015, December.
    9. Chambers, Marcus J. & Thornton, Michael A., 2012. "Discrete Time Representation Of Continuous Time Arma Processes," Econometric Theory, Cambridge University Press, vol. 28(1), pages 219-238, February.
    10. Chambers, Marcus J., 1999. "Discrete time representation of stationary and non-stationary continuous time systems," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 619-639, February.
    11. Zadrozny, Peter, 1988. "Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies," Econometric Theory, Cambridge University Press, vol. 4(1), pages 108-124, April.
    12. Henghsiu Tsai & K. S. Chan, 2005. "Temporal Aggregation of Stationary and Non‐stationary Continuous‐Time Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(4), pages 583-597, December.
    13. Bergstrom, Albert Rex, 1983. "Gaussian Estimation of Structural Parameters in Higher Order Continuous Time Dynamic Models," Econometrica, Econometric Society, vol. 51(1), pages 117-152, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neil Kellard & Denise Osborn & Jerry Coakley & Marcus J. Chambers, 2015. "Testing for a Unit Root in a Near-Integrated Model with Skip-Sampled Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 630-649, September.
    2. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    2. Michael A. Thornton & Marcus J. Chambers, 2013. "Temporal aggregation in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 13, pages 289-310, Edward Elgar Publishing.
    3. Thornton, Michael A. & Chambers, Marcus J., 2017. "Continuous time ARMA processes: Discrete time representation and likelihood evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 48-65.
    4. Roderick McCrorie, J., 2001. "Interpolating exogenous variables in continuous time dynamic models," Journal of Economic Dynamics and Control, Elsevier, vol. 25(9), pages 1399-1427, September.
    5. J. Roderick McCrorie, 2000. "The Likelihood of a Continuous-time Vector Autoregressive Model," Working Papers 419, Queen Mary University of London, School of Economics and Finance.
    6. Milena Hoyos, 2020. "Mixed First‐ and Second‐Order Cointegrated Continuous Time Models with Mixed Stock and Flow Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 249-267, March.
    7. Chambers, Marcus J., 1999. "Discrete time representation of stationary and non-stationary continuous time systems," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 619-639, February.
    8. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    9. J. Roderick McCrorie, 2000. "The Likelihood of a Continuous-time Vector Autoregressive Model," Working Papers 419, Queen Mary University of London, School of Economics and Finance.
    10. D. Stephen G. Pollock, 2020. "Linear Stochastic Models in Discrete and Continuous Time," Econometrics, MDPI, vol. 8(3), pages 1-22, September.
    11. Theodore Simos, 2008. "The exact discrete model of a system of linear stochastic differential equations driven by fractional noise," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 1019-1031, November.
    12. Thornton, Michael A. & Chambers, Marcus J., 2016. "The exact discretisation of CARMA models with applications in finance," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 739-761.
    13. J. McCrorie, 2002. "The Likelihood of the Parameters of a Continuous Time Vector Autoregressive Model," Statistical Inference for Stochastic Processes, Springer, vol. 5(3), pages 273-286, October.
    14. McCrorie, J. Roderick & Chambers, Marcus J., 2006. "Granger causality and the sampling of economic processes," Journal of Econometrics, Elsevier, vol. 132(2), pages 311-336, June.
    15. Byers, S. L. & Nowman, K. B., 1998. "Forecasting U.K. and U.S. interest rates using continuous time term structure models," International Review of Financial Analysis, Elsevier, vol. 7(3), pages 191-206.
    16. Vicky Fasen‐Hartmann & Sebastian Kimmig, 2020. "Robust estimation of stationary continuous‐time arma models via indirect inference," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 620-651, September.
    17. Jewitt, Giles & Roderick McCrorie, J., 2005. "Computing estimates of continuous time macroeconometric models on the basis of discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 397-416, April.
    18. Lawrence J. Christiano & Martin S. Eichenbaum, 1985. "A continuous time, general equilibrium, inventory-sales model," Working Papers 361, Federal Reserve Bank of Minneapolis.
    19. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    20. A. R. Bergstrom, 2001. "Stability and wage acceleration in macroeconomic models of cyclical growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 327-340.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:34:y:2013:i:5:p:552-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.