IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v30y2017i1d10.1007_s10959-015-0644-6.html
   My bibliography  Save this article

Two Novel Characterizations of Self-Decomposability on the Half-Line

Author

Listed:
  • Jan-Frederik Mai

    (Technische Universität München)

  • Steffen Schenk

    (Technische Universität München)

  • Matthias Scherer

    (Technische Universität München)

Abstract

Two novel characterizations of self-decomposable Bernstein functions are provided. The first one is purely analytic, stating that a function $$\varPsi $$ Ψ is the Bernstein function of a self-decomposable probability law $$\pi $$ π on the positive half-axis if and only if alternating sums of $$\varPsi $$ Ψ satisfy certain monotonicity conditions. The second characterization is of probabilistic nature, showing that $$\varPsi $$ Ψ is a self-decomposable Bernstein function if and only if a related d-variate function $$C_{\psi ,d}$$ C ψ , d , $$\psi :=\exp (-\varPsi )$$ ψ : = exp ( - Ψ ) , is a d-variate copula for each $$d \ge 2$$ d ≥ 2 . A canonical stochastic construction is presented, in which $$\pi $$ π (respectively $$\varPsi $$ Ψ ) determines the probability law of an exchangeable sequence of random variables $$\{U_k\}_{k\in {\mathbb {N}}}$$ { U k } k ∈ N such that $$(U_1,\ldots ,U_d) \sim C_{\psi ,d}$$ ( U 1 , … , U d ) ∼ C ψ , d for each $$d \ge 2$$ d ≥ 2 . The random variables $$\{U_k\}_{k\in {\mathbb {N}}},$$ { U k } k ∈ N , are i.i.d. conditioned on an increasing Sato process whose law is characterized by $$\varPsi $$ Ψ . The probability law of $$\{U_k\}_{k \in {\mathbb {N}}}$$ { U k } k ∈ N is studied in quite some detail.

Suggested Citation

  • Jan-Frederik Mai & Steffen Schenk & Matthias Scherer, 2017. "Two Novel Characterizations of Self-Decomposability on the Half-Line," Journal of Theoretical Probability, Springer, vol. 30(1), pages 365-383, March.
  • Handle: RePEc:spr:jotpro:v:30:y:2017:i:1:d:10.1007_s10959-015-0644-6
    DOI: 10.1007/s10959-015-0644-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-015-0644-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-015-0644-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Embrechts & Marius Hofert, 2013. "A note on generalized inverses," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 423-432, June.
    2. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    3. Sato, Ken-iti & Yamazato, Makoto, 1984. "Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type," Stochastic Processes and their Applications, Elsevier, vol. 17(1), pages 73-100, May.
    4. Paul Ressel, 2013. "Finite Exchangeability, Lévy-Frailty Copulas and Higher-Order Monotonic Sequences," Journal of Theoretical Probability, Springer, vol. 26(3), pages 666-675, September.
    5. Ressel, Paul, 2011. "Monotonicity properties of multivariate distribution and survival functions -- With an application to Lévy-frailty copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 393-404, March.
    6. Mai, Jan-Frederik & Scherer, Matthias, 2009. "Lévy-frailty copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1567-1585, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brück, Florian, 2023. "Exact simulation of continuous max-id processes with applications to exchangeable max-id sequences," Journal of Multivariate Analysis, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shenkman, Natalia, 2017. "A natural parametrization of multivariate distributions with limited memory," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 234-251.
    2. Mai, Jan-Frederik & Scherer, Matthias, 2012. "H-extendible copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 151-160.
    3. Mai, Jan-Frederik & Scherer, Matthias & Shenkman, Natalia, 2013. "Multivariate geometric distributions, (logarithmically) monotone sequences, and infinitely divisible laws," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 457-480.
    4. Mai Jan-Frederik, 2014. "A note on the Galambos copula and its associated Bernstein function," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-8, March.
    5. Mai, Jan-Frederik, 2018. "Extreme-value copulas associated with the expected scaled maximum of independent random variables," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 50-61.
    6. Paul Ressel, 2013. "Finite Exchangeability, Lévy-Frailty Copulas and Higher-Order Monotonic Sequences," Journal of Theoretical Probability, Springer, vol. 26(3), pages 666-675, September.
    7. Georg Menz & Moritz Vo{ss}, 2023. "Aggregation of financial markets," Papers 2309.04116, arXiv.org, revised Sep 2024.
    8. Maejima, Makoto & Ueda, Yohei, 2010. "[alpha]-selfdecomposable distributions and related Ornstein-Uhlenbeck type processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2363-2389, December.
    9. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Quantile-Based Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org, revised Oct 2024.
    10. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.
    11. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    12. Jaworski Piotr, 2017. "On Conditional Value at Risk (CoVaR) for tail-dependent copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 1-19, January.
    13. Jeguirim, Khaled & Ben Salem, Leila, 2024. "Unveiling extreme dependencies between oil price shocks and inflation in Tunisia: Insights from a copula dcc garch approach," MPRA Paper 121616, University Library of Munich, Germany.
    14. Bucher, Axel & Segers, Johan, 2013. "Extreme value copula estimation based on block maxima of a multivariate stationary time series," LIDAM Discussion Papers ISBA 2013049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Balakrishnan, N. & Hashorva, E., 2011. "On Pearson-Kotz Dirichlet distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 948-957, May.
    16. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    17. Hua, Lei, 2015. "Tail negative dependence and its applications for aggregate loss modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 135-145.
    18. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    19. Jaworski Piotr, 2023. "On copulas with a trapezoid support," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-23, January.
    20. T. Ogihara & N. Yoshida, 2011. "Quasi-likelihood analysis for the stochastic differential equation with jumps," Statistical Inference for Stochastic Processes, Springer, vol. 14(3), pages 189-229, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:30:y:2017:i:1:d:10.1007_s10959-015-0644-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.