IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i10p4119-4143.html
   My bibliography  Save this article

Multivariate stochastic delay differential equations and CAR representations of CARMA processes

Author

Listed:
  • Basse-O’Connor, Andreas
  • Nielsen, Mikkel Slot
  • Pedersen, Jan
  • Rohde, Victor

Abstract

In this study we show how to represent a continuous time autoregressive moving average (CARMA) as a higher order stochastic delay differential equation, which may be thought of as a CAR(∞) representation. Furthermore, we show how the CAR(∞) representation gives rise to a prediction formula for CARMA processes. To be used in the above mentioned results we develop a general theory for multivariate stochastic delay differential equations, which will be of independent interest, and which will have particular focus on existence, uniqueness and representations.

Suggested Citation

  • Basse-O’Connor, Andreas & Nielsen, Mikkel Slot & Pedersen, Jan & Rohde, Victor, 2019. "Multivariate stochastic delay differential equations and CAR representations of CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4119-4143.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:10:p:4119-4143
    DOI: 10.1016/j.spa.2018.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918306513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brockwell, Peter J. & Davis, Richard A. & Yang, Yu, 2011. "Estimation for Non-Negative Lévy-Driven CARMA Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 250-259.
    2. Peter J. Brockwell & Richard A. Davis & Yu Yang, 2011. "Estimation for Non-Negative Lévy-Driven CARMA Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 250-259, April.
    3. P. Brockwell, 2001. "Lévy-Driven Carma Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 113-124, March.
    4. Marquardt, Tina & Stelzer, Robert, 2007. "Multivariate CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 96-120, January.
    5. Brockwell, Peter J. & Schlemm, Eckhard, 2013. "Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 217-251.
    6. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    7. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2007. "Putting a Price on Temperature," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 746-767, December.
    8. Marquardt, Tina, 2007. "Multivariate fractionally integrated CARMA processes," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1705-1725, October.
    9. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
    10. Brockwell, Peter J. & Lindner, Alexander, 2015. "Prediction of Lévy-driven CARMA processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 263-271.
    11. Gushchin, Alexander A. & Küchler, Uwe, 2000. "On stationary solutions of delay differential equations driven by a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 88(2), pages 195-211, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nielsen, Mikkel Slot, 2020. "On non-stationary solutions to MSDDEs: Representations and the cointegration space," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3154-3173.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benth, Fred Espen & Karbach, Sven, 2023. "Multivariate continuous-time autoregressive moving-average processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 299-337.
    2. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    3. Brockwell, Peter J. & Schlemm, Eckhard, 2013. "Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 217-251.
    4. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    5. Fasen, Vicky & Fuchs, Florian, 2013. "On the limit behavior of the periodogram of high-frequency sampled stable CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 229-273.
    6. Vicky Fasen, 2016. "Dependence Estimation for High-frequency Sampled Multivariate CARMA Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 292-320, March.
    7. Sikora, Grzegorz & Michalak, Anna & Bielak, Łukasz & Miśta, Paweł & Wyłomańska, Agnieszka, 2019. "Stochastic modeling of currency exchange rates with novel validation techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1202-1215.
    8. Péter Kevei, 2018. "Asymptotic moving average representation of high-frequency sampled multivariate CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 467-487, April.
    9. Szarek, Dawid & Bielak, Łukasz & Wyłomańska, Agnieszka, 2020. "Long-term prediction of the metals’ prices using non-Gaussian time-inhomogeneous stochastic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    10. Nielsen, Mikkel Slot, 2020. "On non-stationary solutions to MSDDEs: Representations and the cointegration space," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3154-3173.
    11. Stefano Iacus & Lorenzo Mercuri, 2015. "Implementation of Lévy CARMA model in Yuima package," Computational Statistics, Springer, vol. 30(4), pages 1111-1141, December.
    12. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    13. Pham, Viet Son, 2020. "Lévy-driven causal CARMA random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7547-7574.
    14. Vicky Fasen-Hartmann & Celeste Mayer, 2022. "Whittle estimation for continuous-time stationary state space models with finite second moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 233-270, April.
    15. Florian Fuchs & Robert Stelzer, 2013. "Spectral Representation of Multivariate Regularly Varying Lévy and CARMA Processes," Journal of Theoretical Probability, Springer, vol. 26(2), pages 410-436, June.
    16. Lorenzo Mercuri & Andrea Perchiazzo & Edit Rroji, 2020. "Finite Mixture Approximation of CARMA(p,q) Models," Papers 2005.10130, arXiv.org, revised May 2020.
    17. Vicky Fasen‐Hartmann & Sebastian Kimmig, 2020. "Robust estimation of stationary continuous‐time arma models via indirect inference," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 620-651, September.
    18. Benth, Fred Espen & Klüppelberg, Claudia & Müller, Gernot & Vos, Linda, 2014. "Futures pricing in electricity markets based on stable CARMA spot models," Energy Economics, Elsevier, vol. 44(C), pages 392-406.
    19. Fasen-Hartmann, Vicky & Mayer, Celeste, 2023. "Empirical spectral processes for stationary state space models," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 319-354.
    20. Brockwell, Peter J. & Lindner, Alexander, 2015. "CARMA processes as solutions of integral equations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 221-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:10:p:4119-4143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.