IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v392y2019icp179-195.html
   My bibliography  Save this article

Evolutionary algorithms for species distribution modelling: A review in the context of machine learning

Author

Listed:
  • Gobeyn, Sacha
  • Mouton, Ans M.
  • Cord, Anna F.
  • Kaim, Andrea
  • Volk, Martin
  • Goethals, Peter L.M.

Abstract

Scientists and decision-makers need tools that can assess which specific pressures lead to ecosystem deterioration, and which measures could reduce these pressures and/or limit their effects. In this context, species distribution models are tools that can be used to help asses these pressures. Evolutionary algorithms represent a collection of promising techniques, inspired by concepts observed in natural evolution, to support the development of species distribution models. They are suited to solve non-trivial tasks, such as the calibration of parameter-rich models, the reduction of model complexity by feature selection and/or the optimization of hyperparameters of other machine learning algorithms. Although widely used in other scientific domains, the full potential of evolutionary algorithms has yet to be explored for applied ecological research. In this synthesis, we study the role of evolutionary algorithms as a machine learning technique to develop the next generation of species distribution models. To do so, we review available methods for species distribution modelling and synthesize literature using evolutionary algorithms. In addition, we discuss specific advantages and weaknesses of evolutionary algorithms and present a guideline for their application. We find that evolutionary algorithms are increasingly used to solve specific and challenging problems. Their flexibility, adaptability and transferability in addition to their capacity to find adequate solutions to complex, non-linear problems are considered as main strengths, especially for species distribution models with a large degree of complexity. The need for programming and modelling skills can be considered as a drawback for novice modellers. In addition, setting values for hyperparameters is a challenge. Future ecological research should focus on exploring the potential of evolutionary algorithms that combine multiple tasks in one learning cycle. In addition, studies should focus on the use of novel machine learning schemes (e.g. automated hyperparameter optimization) to apply evolutionary algorithms, preferably in the context of open science. This way, ecologists and model developers can achieve an adaptable and flexible framework for developing tools useful for decision management.

Suggested Citation

  • Gobeyn, Sacha & Mouton, Ans M. & Cord, Anna F. & Kaim, Andrea & Volk, Martin & Goethals, Peter L.M., 2019. "Evolutionary algorithms for species distribution modelling: A review in the context of machine learning," Ecological Modelling, Elsevier, vol. 392(C), pages 179-195.
  • Handle: RePEc:eee:ecomod:v:392:y:2019:i:c:p:179-195
    DOI: 10.1016/j.ecolmodel.2018.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018304010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Townsend Peterson & Miguel A. Ortega-Huerta & Jeremy Bartley & Victor Sánchez-Cordero & Jorge Soberón & Robert H. Buddemeier & David R. B. Stockwell, 2002. "Future projections for Mexican faunas under global climate change scenarios," Nature, Nature, vol. 416(6881), pages 626-629, April.
    2. Mouton, Ans M. & De Baets, Bernard & Van Broekhoven, Ester & Goethals, Peter L.M., 2009. "Prevalence-adjusted optimisation of fuzzy models for species distribution," Ecological Modelling, Elsevier, vol. 220(15), pages 1776-1786.
    3. Stockwell, David R.B. & Noble, Ian R., 1992. "Induction of sets of rules from animal distribution data: A robust and informative method of data analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 33(5), pages 385-390.
    4. Agoston E. Eiben & Jim Smith, 2015. "From evolutionary computation to the evolution of things," Nature, Nature, vol. 521(7553), pages 476-482, May.
    5. Jan M. Baert & Colin R. Janssen & Koen Sabbe & Frederik De Laender, 2016. "Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    6. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    7. Jeong, Kwang-Seuk & Jang, Ji-Deok & Kim, Dong-Kyun & Joo, Gea-Jae, 2011. "Waterfowls habitat modeling: Simulation of nest site selection for the migratory Little Tern (Sterna albifrons) in the Nakdong estuary," Ecological Modelling, Elsevier, vol. 222(17), pages 3149-3156.
    8. Fukuda, Shinji & De Baets, Bernard & Mouton, Ans M. & Waegeman, Willem & Nakajima, Jun & Mukai, Takahiko & Hiramatsu, Kazuaki & Onikura, Norio, 2011. "Effect of model formulation on the optimization of a genetic Takagi–Sugeno fuzzy system for fish habitat suitability evaluation," Ecological Modelling, Elsevier, vol. 222(8), pages 1401-1413.
    9. Chatfield, Chris, 1993. "Neural networks: Forecasting breakthrough or passing fad?," International Journal of Forecasting, Elsevier, vol. 9(1), pages 1-3, April.
    10. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    11. Sadeghi, Roghayeh & Zarkami, Rahmat & Van Damme, Patrick, 2014. "Modelling habitat preference of an alien aquatic fern, Azolla filiculoides (Lam.), in Anzali wetland (Iran) using data-driven methods," Ecological Modelling, Elsevier, vol. 284(C), pages 1-9.
    12. Bennetsen, Elina & Gobeyn, Sacha & Goethals, Peter L.M., 2016. "Species distribution models grounded in ecological theory for decision support in river management," Ecological Modelling, Elsevier, vol. 325(C), pages 1-12.
    13. Fukuda, Shinji, 2009. "Consideration of fuzziness: Is it necessary in modelling fish habitat preference of Japanese medaka (Oryzias latipes)?," Ecological Modelling, Elsevier, vol. 220(21), pages 2877-2884.
    14. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    15. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    16. Zarkami, Rahmat & Sadeghi, Roghayeh & Goethals, Peter, 2012. "Use of fish distribution modelling for river management," Ecological Modelling, Elsevier, vol. 230(C), pages 44-49.
    17. Sadeghi, Roghayeh & Zarkami, Rahmat & Sabetraftar, Karim & Van Damme, Patrick, 2013. "Application of genetic algorithm and greedy stepwise to select input variables in classification tree models for the prediction of habitat requirements of Azolla filiculoides (Lam.) in Anzali wetland,," Ecological Modelling, Elsevier, vol. 251(C), pages 44-53.
    18. Fukuda, Shinji & Hiramatsu, Kazuaki, 2008. "Prediction ability and sensitivity of artificial intelligence-based habitat preference models for predicting spatial distribution of Japanese medaka (Oryzias latipes)," Ecological Modelling, Elsevier, vol. 215(4), pages 301-313.
    19. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jiang & Ou, Guiyan & Liu, Xiaohui & Dong, Ke, 2022. "How does academic education background affect top researchers’ performance? Evidence from the field of artificial intelligence," Journal of Informetrics, Elsevier, vol. 16(2).
    2. Chaobin Zhang & Ying Zhang & Jianlong Li, 2019. "Grassland Productivity Response to Climate Change in the Hulunbuir Steppes of China," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    3. Benkendorf, Donald J. & Schwartz, Samuel D. & Cutler, D. Richard & Hawkins, Charles P., 2023. "Correcting for the effects of class imbalance improves the performance of machine-learning based species distribution models," Ecological Modelling, Elsevier, vol. 483(C).
    4. Hooftman, Danny A.P. & Bullock, James M. & Jones, Laurence & Eigenbrod, Felix & Barredo, José I. & Forrest, Matthew & Kindermann, Georg & Thomas, Amy & Willcock, Simon, 2022. "Reducing uncertainty in ecosystem service modelling through weighted ensembles," Ecosystem Services, Elsevier, vol. 53(C).
    5. Mohd Shareduwan Mohd Kasihmuddin & Mohd. Asyraf Mansor & Md Faisal Md Basir & Saratha Sathasivam, 2019. "Discrete Mutation Hopfield Neural Network in Propositional Satisfiability," Mathematics, MDPI, vol. 7(11), pages 1-21, November.
    6. Jianguo Zhang & Peitao Li & Xin Yin & Sheng Wang & Yuanguang Zhu, 2022. "Back Analysis of Surrounding Rock Parameters in Pingdingshan Mine Based on BP Neural Network Integrated Mind Evolutionary Algorithm," Mathematics, MDPI, vol. 10(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fukuda, Shinji & De Baets, Bernard & Mouton, Ans M. & Waegeman, Willem & Nakajima, Jun & Mukai, Takahiko & Hiramatsu, Kazuaki & Onikura, Norio, 2011. "Effect of model formulation on the optimization of a genetic Takagi–Sugeno fuzzy system for fish habitat suitability evaluation," Ecological Modelling, Elsevier, vol. 222(8), pages 1401-1413.
    2. Yi, Yujun & Cheng, Xi & Yang, Zhifeng & Wieprecht, Silke & Zhang, Shanghong & Wu, Yingjie, 2017. "Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 748-762.
    3. Mouton, A.M. & Dillen, A. & Van den Neucker, T. & Buysse, D. & Stevens, M. & Coeck, J., 2012. "Impact of sampling efficiency on the performance of data-driven fish habitat models," Ecological Modelling, Elsevier, vol. 245(C), pages 94-102.
    4. Muñoz-Mas, Rafael & Marcos-Garcia, Patricia & Lopez-Nicolas, Antonio & Martínez-García, Francisco J. & Pulido-Velazquez, Manuel & Martínez-Capel, Francisco, 2018. "Combining literature-based and data-driven fuzzy models to predict brown trout (Salmo trutta L.) spawning habitat degradation induced by climate change," Ecological Modelling, Elsevier, vol. 386(C), pages 98-114.
    5. Muñoz-Mas, R. & Martínez-Capel, F. & Alcaraz-Hernández, J.D. & Mouton, A.M., 2015. "Can multilayer perceptron ensembles model the ecological niche of freshwater fish species?," Ecological Modelling, Elsevier, vol. 309, pages 72-81.
    6. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    7. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    8. Argaw Ambelu & Seblework Mekonen & Magaly Koch & Taffere Addis & Pieter Boets & Gert Everaert & Peter Goethals, 2014. "The Application of Predictive Modelling for Determining Bio-Environmental Factors Affecting the Distribution of Blackflies (Diptera: Simuliidae) in the Gilgel Gibe Watershed in Southwest Ethiopia," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-10, November.
    9. Holguin-Gonzalez, Javier E. & Boets, Pieter & Alvarado, Andres & Cisneros, Felipe & Carrasco, María C. & Wyseure, Guido & Nopens, Ingmar & Goethals, Peter L.M., 2013. "Integrating hydraulic, physicochemical and ecological models to assess the effectiveness of water quality management strategies for the River Cuenca in Ecuador," Ecological Modelling, Elsevier, vol. 254(C), pages 1-14.
    10. Mocq, J. & St-Hilaire, A. & Cunjak, R.A., 2013. "Assessment of Atlantic salmon (Salmo salar) habitat quality and its uncertainty using a multiple-expert fuzzy model applied to the Romaine River (Canada)," Ecological Modelling, Elsevier, vol. 265(C), pages 14-25.
    11. Choi, Jong-Kuk & Oh, Hyun-Joo & Koo, Bon Joo & Ryu, Joo-Hyung & Lee, Saro, 2011. "Crustacean habitat potential mapping in a tidal flat using remote sensing and GIS," Ecological Modelling, Elsevier, vol. 222(8), pages 1522-1533.
    12. Horemans, Dante M.L. & Friedrichs, Marjorie A.M. & St-Laurent, Pierre & Hood, Raleigh R. & Brown, Christopher W., 2024. "Evaluating the skill of correlative species distribution models trained with mechanistic model output," Ecological Modelling, Elsevier, vol. 491(C).
    13. Keliang Zhang & Yin Zhang & Diwen Jia & Jun Tao, 2020. "Species Distribution Modeling of Sassafras Tzumu and Implications for Forest Management," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    14. Sadeghi, Roghayeh & Zarkami, Rahmat & Van Damme, Patrick, 2014. "Modelling habitat preference of an alien aquatic fern, Azolla filiculoides (Lam.), in Anzali wetland (Iran) using data-driven methods," Ecological Modelling, Elsevier, vol. 284(C), pages 1-9.
    15. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    16. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    17. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    18. Alex Gliesch & Marcus Ritt, 2022. "A new heuristic for finding verifiable k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 28(1), pages 61-91, February.
    19. Carolina G. Marcelino & João V. C. Avancini & Carla A. D. M. Delgado & Elizabeth F. Wanner & Silvia Jiménez-Fernández & Sancho Salcedo-Sanz, 2021. "Dynamic Electric Dispatch for Wind Power Plants: A New Automatic Controller System Using Evolutionary Algorithms," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    20. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:392:y:2019:i:c:p:179-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.