IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v490y2024ics030438002400022x.html
   My bibliography  Save this article

Using the Canadian Model for Peatlands (CaMP) to examine greenhouse gas emissions and carbon sink strength in Canada's boreal and temperate peatlands

Author

Listed:
  • Bona, Kelly A.
  • Webster, Kara L.
  • Thompson, Dan K.
  • Hararuk, Oleksandra
  • Zhang, Gary
  • Kurz, Werner A.

Abstract

This study applied the Canadian Model for Peatlands (CaMP) to 63.9 million hectares of peatlands within boreal and temperate ecozones of Canada to assess the trends in atmospheric carbon (C) emissions and removals and C sequestration over 30 years (1990–2019). The CaMP modelled net ecosystem productivity (NEP) for peatlands within the study area indicated a net C sink at an annual mean rate of 30.9 Mt C y−1 (48.4 g C m−2 y−1). Net Biome Productivity (NBP), which accounts for losses of carbon due to wildfire, reduced the C sink to 19.0 Mt C y−1 (29.8 g C m−2 y−1). On an area-weighted basis, the Hudson Plains and the Boreal Plains had the highest NBP (34.9 and 34.0 g C m−2 y−1, respectively) and the Atlantic Maritime and Boreal Shield West had the lowest (25.3 and 24.6 g C m−2 y−1 respectively), with the Boreal Shield East having intermediate NBP (27.5 g C m−2 y−1). NBP was highest in peatlands with forest cover, rising with increasing nutrient status (bog < poor fen < rich fen). These modelled values compare well with long-term carbon accumulation rates found in the literature for Canadian peatlands ranging from 6 to 70 g C m−2 y−1. While most years peatlands were a net sink of C, years with extensive fires resulted in peatlands being a small net source of C. The study highlighted that forested peatlands were important in driving the C sequestration sink but were also sensitive to climate warming due to high rates of soil CO2 emission and large wildfire C emissions. This highlights an important, yet vulnerable role these forested peatlands play in Canada's national greenhouse gas accounting. While this research is the first to produce estimates of C sequestration and greenhouse gas emission and removal rates across such a large area of Canada, further research is required across peatland types and ecozones to improve parameterization, validation, and process representations. Our results stress the importance of ecozone-specific analyses and accounting for infrequent large fire years and fire risk in land management policy and carbon accounting.

Suggested Citation

  • Bona, Kelly A. & Webster, Kara L. & Thompson, Dan K. & Hararuk, Oleksandra & Zhang, Gary & Kurz, Werner A., 2024. "Using the Canadian Model for Peatlands (CaMP) to examine greenhouse gas emissions and carbon sink strength in Canada's boreal and temperate peatlands," Ecological Modelling, Elsevier, vol. 490(C).
  • Handle: RePEc:eee:ecomod:v:490:y:2024:i:c:s030438002400022x
    DOI: 10.1016/j.ecolmodel.2024.110633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438002400022X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hararuk, Oleksandra & Shaw, Cindy & Kurz, Werner A., 2017. "Constraining the organic matter decay parameters in the CBM-CFS3 using Canadian National Forest Inventory data and a Bayesian inversion technique," Ecological Modelling, Elsevier, vol. 364(C), pages 1-12.
    2. Bona, Kelly Ann & Shaw, Cindy & Thompson, Dan K. & Hararuk, Oleksandra & Webster, Kara & Zhang, Gary & Voicu, Mihai & Kurz, Werner A., 2020. "The Canadian model for peatlands (CaMP): A peatland carbon model for national greenhouse gas reporting," Ecological Modelling, Elsevier, vol. 431(C).
    3. Kurz, W.A. & Dymond, C.C. & White, T.M. & Stinson, G. & Shaw, C.H. & Rampley, G.J. & Smyth, C. & Simpson, B.N. & Neilson, E.T. & Trofymow, J.A. & Metsaranta, J. & Apps, M.J., 2009. "CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards," Ecological Modelling, Elsevier, vol. 220(4), pages 480-504.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joan P. Casas-Ruiz & Pascal Bodmer & Kelly Ann Bona & David Butman & Mathilde Couturier & Erik J. S. Emilson & Kerri Finlay & Hélène Genet & Daniel Hayes & Jan Karlsson & David Paré & Changhui Peng & , 2023. "Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Bona, Kelly Ann & Shaw, Cindy & Thompson, Dan K. & Hararuk, Oleksandra & Webster, Kara & Zhang, Gary & Voicu, Mihai & Kurz, Werner A., 2020. "The Canadian model for peatlands (CaMP): A peatland carbon model for national greenhouse gas reporting," Ecological Modelling, Elsevier, vol. 431(C).
    3. Metsaranta, J.M. & Kurz, W.A., 2012. "Inter-annual variability of ecosystem production in boreal jack pine forests (1975–2004) estimated from tree-ring data using CBM-CFS3," Ecological Modelling, Elsevier, vol. 224(1), pages 111-123.
    4. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    5. Ima Ituen & Baoxin Hu, 2024. "Assessing the Impact of Land Conversion on Carbon Stocks and GHG Emissions," Land, MDPI, vol. 13(8), pages 1-31, August.
    6. Shenghao Feng & Xiujian Peng & Philip Adams, 2021. "Energy and Economic Implications of Carbon Neutrality in China -- A Dynamic General Equilibrium Analysis," Centre of Policy Studies/IMPACT Centre Working Papers g-318, Victoria University, Centre of Policy Studies/IMPACT Centre.
    7. Jing Zhao & Hui Hu & Jinglei Wang, 2022. "Forest Carbon Reserve Calculation and Comprehensive Economic Value Evaluation: A Forest Management Model Based on Both Biomass Expansion Factor Method and Total Forest Value," IJERPH, MDPI, vol. 19(23), pages 1-15, November.
    8. Shaw, C.H. & Hilger, A.B. & Metsaranta, J. & Kurz, W.A. & Russo, G. & Eichel, F. & Stinson, G. & Smyth, C. & Filiatrault, M., 2014. "Evaluation of simulated estimates of forest ecosystem carbon stocks using ground plot data from Canada's National Forest Inventory," Ecological Modelling, Elsevier, vol. 272(C), pages 323-347.
    9. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    10. Ménard, Isabelle & Thiffault, Evelyne & Boulanger, Yan & Boucher, Jean-François, 2022. "Multi-model approach to integrate climate change impact on carbon sequestration potential of afforestation scenarios in Quebec, Canada," Ecological Modelling, Elsevier, vol. 473(C).
    11. Wang, Z. & Grant, R.F. & Arain, M.A. & Bernier, P.Y. & Chen, B. & Chen, J.M. & Govind, A. & Guindon, L. & Kurz, W.A. & Peng, C. & Price, D.T. & Stinson, G. & Sun, J. & Trofymowe, J.A. & Yeluripati, J., 2013. "Incorporating weather sensitivity in inventory-based estimates of boreal forest productivity: A meta-analysis of process model results," Ecological Modelling, Elsevier, vol. 260(C), pages 25-35.
    12. Duveiller, Gregory & Caporaso, Luca & Abad-Viñas, Raul & Perugini, Lucia & Grassi, Giacomo & Arneth, Almut & Cescatti, Alessandro, 2020. "Local biophysical effects of land use and land cover change: towards an assessment tool for policy makers," Land Use Policy, Elsevier, vol. 91(C).
    13. Cherubini, Francesco & Strømman, Anders H. & Hertwich, Edgar, 2011. "Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy," Ecological Modelling, Elsevier, vol. 223(1), pages 59-66.
    14. Minhas, P.S. & Yadav, R.K. & Lal, K. & Chaturvedi, R.K., 2015. "Effect of long-term irrigation with wastewater on growth, biomass production and water use by Eucalyptus (Eucalyptus tereticornis Sm.) planted at variable stocking density," Agricultural Water Management, Elsevier, vol. 152(C), pages 151-160.
    15. Eilidh J. Forster & John R. Healey & Gary Newman & David Styles, 2023. "Circular wood use can accelerate global decarbonisation but requires cross-sectoral coordination," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Griess, Verena C. & Man, Cosmin D. & Leclerc, Marie-Eve & Tansey, James & Bull, Gary Q., 2019. "Carbon stocks and timber harvest. Alternative policy approaches for the Great Bear rainforest and their consequences," Forest Policy and Economics, Elsevier, vol. 103(C), pages 147-156.
    17. Jonsson, Ragnar & Rinaldi, Francesca & Pilli, Roberto & Fiorese, Giulia & Hurmekoski, Elias & Cazzaniga, Noemi & Robert, Nicolas & Camia, Andrea, 2021. "Boosting the EU forest-based bioeconomy: Market, climate, and employment impacts," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    18. Richard Dudley, 2010. "A little REDD model to quickly compare possible baseline and policy scenarios for reducing emissions from deforestation and forest degradation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(1), pages 53-69, January.
    19. Pilli, Roberto & Grassi, Giacomo & Kurz, Werner A. & Smyth, Carolyn E. & Blujdea, Viorel, 2013. "Application of the CBM-CFS3 model to estimate Italy's forest carbon budget, 1995–2020," Ecological Modelling, Elsevier, vol. 266(C), pages 144-171.
    20. Jay R Malcolm & Bjart Holtsmark & Paul W Piascik, 2020. "Forest harvesting and the carbon debt in boreal east-central Canada," Climatic Change, Springer, vol. 161(3), pages 433-449, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:490:y:2024:i:c:s030438002400022x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.