IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v483y2023ics0304380023001680.html
   My bibliography  Save this article

Phytoplankton adaptive resilience to climate change collapses in case of extreme events – A modeling study

Author

Listed:
  • Sauterey, Boris
  • Gland, Guillaume Le
  • Cermeño, Pedro
  • Aumont, Olivier
  • Lévy, Marina
  • Vallina, Sergio M.

Abstract

As climate change unravels, ecosystems are facing a warming of the climate and an increase in extreme heat events that are unprecedented in recent geological history. We know very little of the ability of oceanic phytoplankton communities, key players in the regulation of Earth's climate by the oceans, to adapt to these changes. Quantifying the resilience of phytoplankton communities to environmental stressors by means of adaptive evolution is however crucial to accurately predict the response of marine ecosystems to climate change. In this work, we use an eco-evolutionary model to simulate the adaptive response of marine phytoplankton to temperature changes in an initially temperate oligotrophic water-column. By exploring a wide range of scenarios of phytoplankton adaptive capacity, we find that phytoplankton can adapt to temperature increases –even very large ones– as long as they occur over the time scale of a century. However, when rapid and extreme events of temperature change are considered, the phytoplankton adaptive capacity breaks down in a number of our scenarios in which primary productivity plummets as a result. This suggests that current Earth System Models assuming perfect phytoplankton adaptatedness to temperature might be overestimating the phytoplankton's resilience to climate change.

Suggested Citation

  • Sauterey, Boris & Gland, Guillaume Le & Cermeño, Pedro & Aumont, Olivier & Lévy, Marina & Vallina, Sergio M., 2023. "Phytoplankton adaptive resilience to climate change collapses in case of extreme events – A modeling study," Ecological Modelling, Elsevier, vol. 483(C).
  • Handle: RePEc:eee:ecomod:v:483:y:2023:i:c:s0304380023001680
    DOI: 10.1016/j.ecolmodel.2023.110437
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023001680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Baptiste Sallée & Violaine Pellichero & Camille Akhoudas & Etienne Pauthenet & Lucie Vignes & Sunke Schmidtko & Alberto Naveira Garabato & Peter Sutherland & Mikael Kuusela, 2021. "Summertime increases in upper-ocean stratification and mixed-layer depth," Nature, Nature, vol. 591(7851), pages 592-598, March.
    2. Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. S. I. Anderson & A. D. Barton & S. Clayton & S. Dutkiewicz & T. A. Rynearson, 2021. "Marine phytoplankton functional types exhibit diverse responses to thermal change," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Stephanie A. Henson & B. B. Cael & Stephanie R. Allen & Stephanie Dutkiewicz, 2021. "Future phytoplankton diversity in a changing climate," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Vallina, S.M. & Cermeno, P. & Dutkiewicz, S. & Loreau, M. & Montoya, J.M., 2017. "Phytoplankton functional diversity increases ecosystem productivity and stability," Ecological Modelling, Elsevier, vol. 361(C), pages 184-196.
    6. Nicolas Gruber & Philip W. Boyd & Thomas L. Frölicher & Meike Vogt, 2021. "Biogeochemical extremes and compound events in the ocean," Nature, Nature, vol. 600(7889), pages 395-407, December.
    7. Thomas L. Frölicher & Erich M. Fischer & Nicolas Gruber, 2018. "Marine heatwaves under global warming," Nature, Nature, vol. 560(7718), pages 360-364, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changyu Li & Jianping Huang & Xiaoyue Liu & Lei Ding & Yongli He & Yongkun Xie, 2024. "The ocean losing its breath under the heatwaves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Alexandre Mignot & Karina Schuckmann & Peter Landschützer & Florent Gasparin & Simon Gennip & Coralie Perruche & Julien Lamouroux & Tristan Amm, 2022. "Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Tongtong Xu & Matthew Newman & Antonietta Capotondi & Samantha Stevenson & Emanuele Di Lorenzo & Michael A. Alexander, 2022. "An increase in marine heatwaves without significant changes in surface ocean temperature variability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Zhang, Jing & Lei, Xiaohui & Chen, Bin & Song, Yongyu, 2019. "Analysis of blue water footprint of hydropower considering allocation coefficients for multi-purpose reservoirs," Energy, Elsevier, vol. 188(C).
    6. Frank A. La Sorte & Alison Johnston & Toby R. Ault, 2021. "Global trends in the frequency and duration of temperature extremes," Climatic Change, Springer, vol. 166(1), pages 1-14, May.
    7. Mi-Kyung Sung & Soon-Il An & Jongsoo Shin & Jae-Heung Park & Young-Min Yang & Hyo-Jeong Kim & Minhee Chang, 2023. "Ocean fronts as decadal thermostats modulating continental warming hiatus," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Marysia Szymkowiak & Andrew Steinkruger, 2024. "Climate change attribution, appraisal, and adaptive capacity for fishermen in the Gulf of Alaska," Climatic Change, Springer, vol. 177(6), pages 1-17, June.
    9. Occhipinti, Guido & Solidoro, Cosimo & Grimaudo, Roberto & Valenti, Davide & Lazzari, Paolo, 2023. "Marine ecosystem models of realistic complexity rarely exhibits significant endogenous non-stationary dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Ce Bian & Zhao Jing & Hong Wang & Lixin Wu & Zhaohui Chen & Bolan Gan & Haiyuan Yang, 2023. "Oceanic mesoscale eddies as crucial drivers of global marine heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Benjamins, Steven & Williamson, Benjamin & Billing, Suzannah-Lynn & Yuan, Zhiming & Collu, Maurizio & Fox, Clive & Hobbs, Laura & Masden, Elizabeth A. & Cottier-Cook, Elizabeth J. & Wilson, Ben, 2024. "Potential environmental impacts of floating solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Ying Zhang & Yan Du & Ming Feng & Alistair J. Hobday, 2023. "Vertical structures of marine heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Maar, Marie & Butenschön, Momme & Daewel, Ute & Eggert, Anja & Fan, Wei & Hjøllo, Solfrid S. & Hufnagl, Marc & Huret, Martin & Ji, Rubao & Lacroix, Geneviève & Peck, Myron A. & Radtke, Hagen & Sailley, 2018. "Responses of summer phytoplankton biomass to changes in top-down forcing: Insights from comparative modelling," Ecological Modelling, Elsevier, vol. 376(C), pages 54-67.
    14. Shannon G. Klein & Cassandra Roch & Carlos M. Duarte, 2024. "Systematic review of the uncertainty of coral reef futures under climate change," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Han, Yue & Zhou, Yuntao, 2022. "Investigating biophysical control of marine phytoplankton dynamics via Bayesian mechanistic modeling," Ecological Modelling, Elsevier, vol. 474(C).
    16. Erma Yulihastin & Ankiq Taofiqurohman & Ibnu Fathrio & Fadli Nauval & Dita Fatria Andarini & Rahaden Bagas Hatmaja & Akhmad Fahim & Namira Nasywa Perdani & Haries Satyawardhana & M. Furqon Azis Ismail, 2023. "Evolution of double vortices induce tropical cyclogenesis of Seroja over Flores, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2675-2692, July.
    17. João Brandão & Chelsea Weiskerger & Elisabete Valério & Tarja Pitkänen & Päivi Meriläinen & Lindsay Avolio & Christopher D. Heaney & Michael J. Sadowsky, 2022. "Climate Change Impacts on Microbiota in Beach Sand and Water: Looking Ahead," IJERPH, MDPI, vol. 19(3), pages 1-15, January.
    18. Andrea Storto & Chunxue Yang, 2024. "Acceleration of the ocean warming from 1961 to 2022 unveiled by large-ensemble reanalyses," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Lisandro Benedetti-Cecchi & Amanda E. Bates & Giovanni Strona & Fabio Bulleri & Barbara Horta e Costa & Graham J. Edgar & Bernat Hereu & Dan C. Reed & Rick D. Stuart-Smith & Neville S. Barrett & David, 2024. "Marine protected areas promote stability of reef fish communities under climate warming," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Kathryn E. Smith & Margot Aubin & Michael T. Burrows & Karen Filbee-Dexter & Alistair J. Hobday & Neil J. Holbrook & Nathan G. King & Pippa J. Moore & Alex Sen Gupta & Mads Thomsen & Thomas Wernberg &, 2024. "Global impacts of marine heatwaves on coastal foundation species," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:483:y:2023:i:c:s0304380023001680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.