IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip1s0960077923008627.html
   My bibliography  Save this article

Marine ecosystem models of realistic complexity rarely exhibits significant endogenous non-stationary dynamics

Author

Listed:
  • Occhipinti, Guido
  • Solidoro, Cosimo
  • Grimaudo, Roberto
  • Valenti, Davide
  • Lazzari, Paolo

Abstract

Despite the observation of cyclic and chaotic dynamics in nature, it is still not clear whether this behaviour is inherent to ecological systems or caused by external forcings. Here we explored a set of approximately 210,000 simulations to assess how often a model of realistic complexity exhibits non-stationary dynamics when external perturbations are excluded. Remarkably, less than one third of the population shown non-stationary dynamics and, even when present, fluctuations were rather small. The inherent stability of plankton communities showed to be related to the presence of multiple feedbacks in the food web structure, omnivory, low centre of gravity, and supports the conclusion that food webs of realistic complexity rarely exhibit significant endogenous non-stationary dynamics. Finally, we computed Lyapunov exponents for the non-stationary trajectories, in order to assess in which proportion they were periodic or chaotic, and we concluded that less than 10% of the non-stationary trajectories (3% of the total) showed sensitivities to initial conditions. This further supports the conclusion that complex topology mainly damps endogenous fluctuations in the food web.

Suggested Citation

  • Occhipinti, Guido & Solidoro, Cosimo & Grimaudo, Roberto & Valenti, Davide & Lazzari, Paolo, 2023. "Marine ecosystem models of realistic complexity rarely exhibits significant endogenous non-stationary dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008627
    DOI: 10.1016/j.chaos.2023.113961
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923008627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lutz Becks & Frank M. Hilker & Horst Malchow & Klaus Jürgens & Hartmut Arndt, 2005. "Experimental demonstration of chaos in a microbial food web," Nature, Nature, vol. 435(7046), pages 1226-1229, June.
    2. Elisa Benincà & Jef Huisman & Reinhard Heerkloss & Klaus D. Jöhnk & Pedro Branco & Egbert H. Van Nes & Marten Scheffer & Stephen P. Ellner, 2008. "Chaos in a long-term experiment with a plankton community," Nature, Nature, vol. 451(7180), pages 822-825, February.
    3. Sankar, S. & Polimene, L. & Marin, L. & Menon, N.N. & Samuelsen, A. & Pastres, R. & Ciavatta, S., 2018. "Sensitivity of the simulated Oxygen Minimum Zone to biogeochemical processes at an oligotrophic site in the Arabian Sea," Ecological Modelling, Elsevier, vol. 372(C), pages 12-23.
    4. Tedesco, Letizia & Vichi, Marcello & Thomas, David N., 2012. "Process studies on the ecological coupling between sea ice algae and phytoplankton," Ecological Modelling, Elsevier, vol. 226(C), pages 120-138.
    5. Stephanie A. Henson & B. B. Cael & Stephanie R. Allen & Stephanie Dutkiewicz, 2021. "Future phytoplankton diversity in a changing climate," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Ottermanns & Kerstin Szonn & Thomas G Preuß & Martina Roß-Nickoll, 2014. "Non-Linear Analysis Indicates Chaotic Dynamics and Reduced Resilience in Model-Based Daphnia Populations Exposed to Environmental Stress," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-13, May.
    2. Shang, Zuchong & Qiao, Yuanhua, 2024. "Complex dynamics of a four-species food web model with nonlinear top predator harvesting and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 458-484.
    3. Chowdhury, Pranali Roy & Banerjee, Malay & Petrovskii, Sergei, 2023. "Coexistence of chaotic and non-chaotic attractors in a three-species slow–fast system," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Guiet, Jérôme & Poggiale, Jean-Christophe & Maury, Olivier, 2016. "Modelling the community size-spectrum: recent developments and new directions," Ecological Modelling, Elsevier, vol. 337(C), pages 4-14.
    5. Grasman, Johan & van Nes, Egbert H. & Kersting, Kees, 2009. "Data-directed modelling of Daphnia dynamics in a long-term micro-ecosystem experiment," Ecological Modelling, Elsevier, vol. 220(3), pages 343-350.
    6. Alejandra Goldenberg Vilar & Timme Donders & Aleksandra Cvetkoska & Friederike Wagner-Cremer, 2018. "Seasonality modulates the predictive skills of diatom based salinity transfer functions," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-19, November.
    7. Karnatak, Rajat & Ramaswamy, Ram & Feudel, Ulrike, 2014. "Conjugate coupling in ecosystems: Cross-predation stabilizes food webs," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 48-57.
    8. Chuanjun Dai & Hengguo Yu & Qing Guo & He Liu & Qi Wang & Zengling Ma & Min Zhao, 2019. "Dynamics Induced by Delay in a Nutrient-Phytoplankton Model with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    9. Samuel R Bray & Bo Wang, 2020. "Forecasting unprecedented ecological fluctuations," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-17, June.
    10. Banas, Neil S., 2011. "Adding complex trophic interactions to a size-spectral plankton model: Emergent diversity patterns and limits on predictability," Ecological Modelling, Elsevier, vol. 222(15), pages 2663-2675.
    11. C. A. Tapia Cortez & J. Coulton & C. Sammut & S. Saydam, 2018. "Determining the chaotic behaviour of copper prices in the long-term using annual price data," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-13, December.
    12. Moscoso, Jordyn E. & Bianchi, Daniele & Stewart, Andrew L., 2022. "Controls and characteristics of biomass quantization in size-structured planktonic ecosystem models," Ecological Modelling, Elsevier, vol. 468(C).
    13. Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
    14. Sauterey, Boris & Gland, Guillaume Le & Cermeño, Pedro & Aumont, Olivier & Lévy, Marina & Vallina, Sergio M., 2023. "Phytoplankton adaptive resilience to climate change collapses in case of extreme events – A modeling study," Ecological Modelling, Elsevier, vol. 483(C).
    15. Yamauchi, Atsushi & Ito, Koichi & Shibasaki, Shota & Namba, Toshiyuki, 2023. "Continuous irregular dynamics with multiple neutral trajectories permit species coexistence in competitive communities," Theoretical Population Biology, Elsevier, vol. 149(C), pages 39-47.
    16. Tapia, Carlos & Coulton, Jeff & Saydam, Serkan, 2020. "Using entropy to assess dynamic behaviour of long-term copper price," Resources Policy, Elsevier, vol. 66(C).
    17. Adrien Bernard Bonache & Marc Filser, 2013. "Comment améliorer la prévision des ventes pour le marketing ? Les apports de la théorie du chaos," Post-Print hal-03822792, HAL.
    18. Cagle, Sierra E. & Roelke, Daniel L., 2024. "Chaotic mixotroph dynamics arise with nutrient loading: Implications for mixotrophy as a harmful bloom forming mechanism," Ecological Modelling, Elsevier, vol. 492(C).
    19. Yan Huang & Jiansong Wan, 2022. "Hierarchical analysis of Chinese financial market based on manifold structure," Annals of Operations Research, Springer, vol. 315(2), pages 1135-1150, August.
    20. Benjamins, Steven & Williamson, Benjamin & Billing, Suzannah-Lynn & Yuan, Zhiming & Collu, Maurizio & Fox, Clive & Hobbs, Laura & Masden, Elizabeth A. & Cottier-Cook, Elizabeth J. & Wilson, Ben, 2024. "Potential environmental impacts of floating solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.