IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v474y2022ics0304380022002691.html
   My bibliography  Save this article

Investigating biophysical control of marine phytoplankton dynamics via Bayesian mechanistic modeling

Author

Listed:
  • Han, Yue
  • Zhou, Yuntao

Abstract

Marine phytoplankton possess a key position in multiple ecological, biological, and environmental processes; therefore, constructing a systematic and comprehensive mechanistic understanding of the leading mechanisms and key biophysical drivers of phytoplankton dynamics is crucial for evaluating biophysical forcings and ecological responses. Here, we develop a process-based model to improve the characterization of controlling mechanisms and assess the relative importance of nutrients, light, temperature, and oceanic mixing for explaining chlorophyll-a variability in the western North Pacific Ocean. The model is calibrated using 20-year observational data of chlorophyll-a concentrations from 1993 to 2012 in a Bayesian framework to provide data-driven inference and a rigorous uncertainty quantification of important biophysical rates. The model explains approximately 61% of the variability in chlorophyll-a. Our results, supported by cross-validation, show that the chlorophyll-a concentration is much more responsive to temperature variability than nutrients, light, or mixing. By synthesizing the effects of multiple nutrients (i.e., nitrogen, phosphorus, silica, and iron) on phytoplankton dynamics, we find that iron and nitrogen largely determine the chlorophyll-a variability. Sensitivity analysis shows that future warming conditions with +3°C change in temperature will impede phytoplankton production by 24% due to an intensified phytoplankton mortality impact. Our findings highlight the potential of “deductive-and-inductive” modeling approaches combining embedded biophysical mechanisms and probabilistic uncertainty quantification to effectively integrate and leverage sporadic ocean monitoring efforts and ultimately improve the marine water quality predictions.

Suggested Citation

  • Han, Yue & Zhou, Yuntao, 2022. "Investigating biophysical control of marine phytoplankton dynamics via Bayesian mechanistic modeling," Ecological Modelling, Elsevier, vol. 474(C).
  • Handle: RePEc:eee:ecomod:v:474:y:2022:i:c:s0304380022002691
    DOI: 10.1016/j.ecolmodel.2022.110168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022002691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Gang & Chai, Fei & Tang, DanLing & Wang, Dongxiao, 2017. "Marine phytoplankton biomass responses to typhoon events in the South China Sea based on physical-biogeochemical model," Ecological Modelling, Elsevier, vol. 356(C), pages 38-47.
    2. Daniel G. Boyce & Marlon R. Lewis & Boris Worm, 2010. "Global phytoplankton decline over the past century," Nature, Nature, vol. 466(7306), pages 591-596, July.
    3. Bo Qiu & Toshiya Nakano & Shuiming Chen & Patrice Klein, 2017. "Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    4. S. I. Anderson & A. D. Barton & S. Clayton & S. Dutkiewicz & T. A. Rynearson, 2021. "Marine phytoplankton functional types exhibit diverse responses to thermal change," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Toby Tyrrell, 1999. "The relative influences of nitrogen and phosphorus on oceanic primary production," Nature, Nature, vol. 400(6744), pages 525-531, August.
    6. Thomas J. Browning & Eric P. Achterberg & Insa Rapp & Anja Engel & Erin M. Bertrand & Alessandro Tagliabue & C. Mark Moore, 2017. "Nutrient co-limitation at the boundary of an oceanic gyre," Nature, Nature, vol. 551(7679), pages 242-246, November.
    7. Christopher A. Klausmeier & Elena Litchman & Tanguy Daufresne & Simon A. Levin, 2004. "Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton," Nature, Nature, vol. 429(6988), pages 171-174, May.
    8. Marina Lévy & Peter J. S. Franks & K. Shafer Smith, 2018. "The role of submesoscale currents in structuring marine ecosystems," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    9. A. Toseland & S. J. Daines & J. R. Clark & A. Kirkham & J. Strauss & C. Uhlig & T. M. Lenton & K. Valentin & G. A. Pearson & V. Moulton & T. Mock, 2013. "The impact of temperature on marine phytoplankton resource allocation and metabolism," Nature Climate Change, Nature, vol. 3(11), pages 979-984, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael W. Lomas & Nicholas R. Bates & Rodney J. Johnson & Deborah K. Steinberg & Tatsuro Tanioka, 2022. "Adaptive carbon export response to warming in the Sargasso Sea," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Huang, Tousheng & Yu, Chengfeng & Zhang, Kui & Liu, Xingyu & Zhen, Jiulong & Wang, Lan, 2023. "Complex pattern dynamics and synchronization in a coupled spatiotemporal plankton system with zooplankton vertical migration," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    3. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    4. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    5. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    6. Kuosmanen, Timo & Laukkanen, Marita, 2009. "(In)Efficient Management of Interacting Environmental Bads," Discussion Papers 54287, MTT Agrifood Research Finland.
    7. Li, Yu & Waite, Anya M. & Gal, Gideon & Hipsey, Matthew R., 2013. "An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment," Ecological Modelling, Elsevier, vol. 252(C), pages 196-213.
    8. Tahmina Ajmal & Fazeel Mohammed & Martin S. Goodchild & Jipsy Sudarsanan & Sarah Halse, 2024. "Mitigating the Impact of Harmful Algal Blooms on Aquaculture Using Technological Interventions: Case Study on a South African Farm," Sustainability, MDPI, vol. 16(9), pages 1-15, April.
    9. Elofsson, Katarina & Folmer, Henk & Gren, Ing-Marie, 2003. "Management of eutrophicated coastal ecosystems: a synopsis of the literature with emphasis on theory and methodology," Ecological Economics, Elsevier, vol. 47(1), pages 1-11, November.
    10. Aulicino, Giuseppe & Cesarano, Cinzia & Zerrouki, Mohamed & Ruiz, Simon & Budillon, Giorgio & Cotroneo, Yuri, 2021. "On the use of ABACUS high resolution glider observations for the assessment of phytoplankton ocean biomass from CMEMS model products," Ecological Modelling, Elsevier, vol. 455(C).
    11. Chin-Hsien Cheng & Simon A. T. Redfern, 2022. "Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Jiancai Deng & Fang Chen & Weiping Hu & Xin Lu & Bin Xu & David P. Hamilton, 2019. "Variations in the Distribution of Chl- a and Simulation Using a Multiple Regression Model," IJERPH, MDPI, vol. 16(22), pages 1-16, November.
    13. Katherine A. Crichton & Jamie D. Wilson & Andy Ridgwell & Flavia Boscolo-Galazzo & Eleanor H. John & Bridget S. Wade & Paul N. Pearson, 2023. "What the geological past can tell us about the future of the ocean’s twilight zone," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Enrico Ser-Giacomi & Ricardo Martinez-Garcia & Stephanie Dutkiewicz & Michael J. Follows, 2023. "A Lagrangian model for drifting ecosystems reveals heterogeneity-driven enhancement of marine plankton blooms," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Vitul Agarwal & Jonathan Chávez-Casillas & Keisuke Inomura & Colleen B. Mouw, 2024. "Patterns in the temporal complexity of global chlorophyll concentration," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Daniel Graeber & Mark J. McCarthy & Tom Shatwell & Dietrich Borchardt & Erik Jeppesen & Martin Søndergaard & Torben L. Lauridsen & Thomas A. Davidson, 2024. "Consistent stoichiometric long-term relationships between nutrients and chlorophyll-a across shallow lakes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Arhonditsis, George B. & Stow, Craig A. & Paerl, Hans W. & Valdes-Weaver, Lexia M. & Steinberg, Laura J. & Reckhow, Kenneth H., 2007. "Delineation of the role of nutrient dynamics and hydrologic forcing on phytoplankton patterns along a freshwater–marine continuum," Ecological Modelling, Elsevier, vol. 208(2), pages 230-246.
    18. Patara, Lavinia & Vichi, Marcello & Masina, Simona, 2013. "Reprint of: “Impacts of natural and anthropogenic climate variations on North Pacific plankton in an Earth System Model”," Ecological Modelling, Elsevier, vol. 264(C), pages 48-63.
    19. Tarun De & Minati De & Subhajit Das & Chumki Chowdhury & Raghab Ray & Tapan Jana, 2011. "Phytoplankton abundance in relation to cultural eutrophication at the land-ocean boundary of Sunderbans, NE Coast of Bay of Bengal, India," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 1(3), pages 169-180, September.
    20. Michael P. Totten, 2012. "GreenATP: APPortunities to catalyze local to global positive tipping points through collaborative innovation networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(1), pages 98-113, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:474:y:2022:i:c:s0304380022002691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.