IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v476y2023ics030438002200326x.html
   My bibliography  Save this article

Wetland carbon models: Applications for wetland carbon commercialization

Author

Listed:
  • Mack, Sarah K.
  • Lane, Robert R.
  • Deng, Jia
  • Morris, James T.
  • Bauer, Julian J.

Abstract

Processed-based biogeochemical mathematical models are powerful tools that are increasingly being used to estimate potential carbon sequestration and greenhouse gas (GHG) impacts of management at a landscape level. These models can simulate some or all of the processes responsible for carbon sequestration and GHG emissions, which can relieve some of the burdensome in-situ monitoring requirements that make many blue carbon projects cost-prohibitive. Here we selectively review five publicly available and widely used biogeochemical models (MEM, PEPRMT, DNDC, DayCent and FVS) including their current applications and limitations towards blue carbon project development. Of the five models, only the DNDC model can be applied to fully account for net sequestration as applicable to blue carbon offset methodologies. With further development, the DayCent and the combined MEM/PEPRMT models may prove to be applicable. Successful application of such models will address one of the biggest barriers to landscape-scale blue carbon project development.

Suggested Citation

  • Mack, Sarah K. & Lane, Robert R. & Deng, Jia & Morris, James T. & Bauer, Julian J., 2023. "Wetland carbon models: Applications for wetland carbon commercialization," Ecological Modelling, Elsevier, vol. 476(C).
  • Handle: RePEc:eee:ecomod:v:476:y:2023:i:c:s030438002200326x
    DOI: 10.1016/j.ecolmodel.2022.110228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438002200326X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jenkins, W. Aaron & Murray, Brian C. & Kramer, Randall A. & Faulkner, Stephen P., 2010. "Valuing ecosystem services from wetlands restoration in the Mississippi Alluvial Valley," Ecological Economics, Elsevier, vol. 69(5), pages 1051-1061, March.
    2. Gilhespy, Sarah L. & Anthony, Steven & Cardenas, Laura & Chadwick, David & del Prado, Agustin & Li, Changsheng & Misselbrook, Thomas & Rees, Robert M. & Salas, William & Sanz-Cobena, Alberto & Smith, , 2014. "First 20 years of DNDC (DeNitrification DeComposition): Model evolution," Ecological Modelling, Elsevier, vol. 292(C), pages 51-62.
    3. Alizad, Karim & Hagen, Scott C. & Morris, James T. & Bacopoulos, Peter & Bilskie, Matthew V. & Weishampel, John F. & Medeiros, Stephen C., 2016. "A coupled, two-dimensional hydrodynamic-marsh model with biological feedback," Ecological Modelling, Elsevier, vol. 327(C), pages 29-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kendall Valentine & Ellen R. Herbert & David C. Walters & Yaping Chen & Alexander J. Smith & Matthew L. Kirwan, 2023. "Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Currie, William S. & Goldberg, Deborah E. & Martina, Jason & Wildova, Radka & Farrer, Emily & Elgersma, Kenneth J., 2014. "Emergence of nutrient-cycling feedbacks related to plant size and invasion success in a wetland community–ecosystem model," Ecological Modelling, Elsevier, vol. 282(C), pages 69-82.
    2. Aevermann Tim & Schmude Jürgen, 2015. "Quantification and monetary valuation of urban ecosystem services in Munich, Germany," ZFW – Advances in Economic Geography, De Gruyter, vol. 59(3), pages 188-200, December.
    3. Matzek, Virginia & Wilson, Kerrie A. & Kragt, Marit, 2019. "Mainstreaming of ecosystem services as a rationale for ecological restoration in Australia," Ecosystem Services, Elsevier, vol. 35(C), pages 79-86.
    4. Nittaya Cha-un & Amnat Chidthaisong & Kazuyuki Yagi & Sirintornthep Towprayoon, 2021. "Simulating the Long-Term Effects of Fertilizer and Water Management on Grain Yield and Methane Emissions of Paddy Rice in Thailand," Agriculture, MDPI, vol. 11(11), pages 1-22, November.
    5. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2022. "A semi-empirical semi-process model of ammonia volatilization from paddy fields under different irrigation modes and urea application regimes," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Catherine L. Kling & Yiannis Panagopoulos & Adriana Valcu-Lisman & Philip W. Gassman & Sergey Rabotyagov & Todd Campbell & Mike White & Jeffrey G. Arnold & Raghavan Srinivasan & Manoj Jha & Jeff Richa, 2014. "Land Use Model Integrating Agriculture and the Environment (LUMINATE): Linkages between Agricultural Land Use, Local Water Quality and Hypoxic Concerns in the Gulf of Mexico Basin," Center for Agricultural and Rural Development (CARD) Publications 14-wp546, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    7. Mutandwa, Edward & Grala, Robert K. & Grebner, Donald L., 2016. "Family forest land availability for the production of ecosystem services in Mississippi, United States," Forest Policy and Economics, Elsevier, vol. 73(C), pages 18-24.
    8. Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
    9. Stephen C. Hagen & Grace Delgado & Peter Ingraham & Ian Cooke & Richard Emery & Justin P. Fisk & Lindsay Melendy & Thomas Olson & Shawn Patti & Nathanael Rubin & Beth Ziniti & Haixin Chen & William Sa, 2020. "Mapping Conservation Management Practices and Outcomes in the Corn Belt Using the Operational Tillage Information System (OpTIS) and the Denitrification–Decomposition (DNDC) Model," Land, MDPI, vol. 9(11), pages 1-23, October.
    10. Gao, Jie & Wang, Rusong & Huang, Jinlou & Liu, Min, 2015. "Application of BMP to urban runoff control using SUSTAIN model: Case study in an industrial area," Ecological Modelling, Elsevier, vol. 318(C), pages 177-183.
    11. Zhao, Zheng & Cao, Linkui & Deng, Jia & Sha, Zhimin & Chu, Changbin & Zhou, Deping & Wu, Shuhang & Lv, Weiguang, 2020. "Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai, China with the DNDC model," Agricultural Systems, Elsevier, vol. 178(C).
    12. Pinke, Zsolt & Kiss, Márton & Lövei, Gábor L., 2018. "Developing an integrated land use planning system on reclaimed wetlands of the Hungarian Plain using economic valuation of ecosystem services," Ecosystem Services, Elsevier, vol. 30(PB), pages 299-308.
    13. Berg, Chelsea E. & Mineau, Madeleine M. & Rogers, Shannon H., 2016. "Reprint:Examining the ecosystem service of nutrient removal in a coastal watershed," Ecosystem Services, Elsevier, vol. 22(PB), pages 309-317.
    14. Jing, Rui & Li, Yubing & Wang, Meng & Chachuat, Benoit & Lin, Jianyi & Guo, Miao, 2021. "Coupling biogeochemical simulation and mathematical optimisation towards eco-industrial energy systems design," Applied Energy, Elsevier, vol. 290(C).
    15. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    16. Günther, Anke & Böther, Stefanie & Couwenberg, John & Hüttel, Silke & Jurasinski, Gerald, 2018. "Profitability of Direct Greenhouse Gas Measurements in Carbon Credit Schemes of Peatland Rewetting," Ecological Economics, Elsevier, vol. 146(C), pages 766-771.
    17. Xiaobo Xue Romeiko & Zhijian Guo & Yulei Pang & Eun Kyung Lee & Xuesong Zhang, 2020. "Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    18. Catherine L. Kling & Yiannis Panagopoulos & Sergey S. Rabotyagov & Adriana M. Valcu & Philip W. Gassman & Todd Campbell & Michael J. White & Jeffrey G. Arnold & Raghavan Srinivasan & Manoj K. Jha & Je, 2014. "LUMINATE: linking agricultural land use, local water quality and Gulf of Mexico hypoxia," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(3), pages 431-459.
    19. Richardson, Leslie & Loomis, John & Kroeger, Timm & Casey, Frank, 2015. "The role of benefit transfer in ecosystem service valuation," Ecological Economics, Elsevier, vol. 115(C), pages 51-58.
    20. Wainger, Lisa A. & Van Houtven, George & Loomis, Ross & Messer, Jay & Beach, Robert & Deerhake, Marion, 2013. "Tradeoffs among Ecosystem Services, Performance Certainty, and Cost-efficiency in Implementation of the Chesapeake Bay Total Maximum Daily Load," Agricultural and Resource Economics Review, Cambridge University Press, vol. 42(1), pages 196-224, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:476:y:2023:i:c:s030438002200326x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.