IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v475y2023ics030438002200309x.html
   My bibliography  Save this article

Evaluation of seasonal site-level demography and management for northern bobwhite using integrated population models

Author

Listed:
  • Sinnott, Emily A.
  • Thompson, Frank R.
  • Weegman, Mitch D.
  • Thompson, Thomas R.
  • Mosloff, Alisha R.
  • Hedges, R. Kyle
  • Loncarich, Frank L.

Abstract

Understanding the effects of landscape management on northern bobwhite (Colinus virginianus) population growth requires information on seasonal- and stage-specific demographic parameters linked across the full annual cycle. We evaluated site-level seasonal dynamics and population growth of bobwhites in southwest Missouri and compared differences between three extensively and two intensively managed sites from 2016 to 2019. Extensively managed sites were continuous tracts of native prairie. Intensively managed sites were composed of smaller native and non-native grassland units interspersed with strip crops, food plots, and woody field borders. We radio-marked adults and broods to estimate survival and productivity, conducted spring whistle counts to estimate abundance and developed a two-season, two-stage, two-sex integrated population model to estimate population dynamics. The number of young hatched per female-incubated nest was greater on the three extensively managed sites compared to the two intensively managed sites. Six-month period survival of adults during the breeding season was also greater on the three extensively managed sites compared to the two intensively managed sites. One hundred-day juvenile breeding season survival varied among sites and was highest on Talbot, compared to juvenile breeding season survival on the other four study sites. Six-month, non-breeding season period survival was lowest on the two smallest extensively managed sites, Stony Point Prairie and Shelton Conservation Area compared to non-breeding season survival on the other three study sites. Annual changes in bobwhite abundance were weakly correlated with female fecundity, though this positive relationship was stronger on extensively managed sites. Intensively managed sites exhibited low mean fecundity and breeding season adult survival relative to those that resulted in a stable population. Populations across sites declined from 2016 to 2019 and estimates of annual population growth rates overlapped across sites. Differences between observed changes in bobwhite abundance and estimates of observed demographic rates at some sites suggest unmeasured processes such as movement or bias associated with data and model assumptions influenced estimated vital rates. Overall, our integrated population model was an effective tool for understanding site-level seasonal dynamics and population growth of bobwhites. Based on comparisons of demography between extensively and intensively managed sites, we suggest increased native grassland cover managed with prescribed fire, low intensity grazing, and high mowing may increase bobwhite nesting success and breeding season adult survival, however, achieving stable or increasing rates of population growth may also require increased juvenile breeding season and non-breeding season survival.

Suggested Citation

  • Sinnott, Emily A. & Thompson, Frank R. & Weegman, Mitch D. & Thompson, Thomas R. & Mosloff, Alisha R. & Hedges, R. Kyle & Loncarich, Frank L., 2023. "Evaluation of seasonal site-level demography and management for northern bobwhite using integrated population models," Ecological Modelling, Elsevier, vol. 475(C).
  • Handle: RePEc:eee:ecomod:v:475:y:2023:i:c:s030438002200309x
    DOI: 10.1016/j.ecolmodel.2022.110211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438002200309X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel F. Doak & William F. Morris, 2010. "Demographic compensation and tipping points in climate-induced range shifts," Nature, Nature, vol. 467(7318), pages 959-962, October.
    2. P. Besbeas & S. N. Freeman & B. J. T. Morgan & E. A. Catchpole, 2002. "Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters," Biometrics, The International Biometric Society, vol. 58(3), pages 540-547, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis, Emily B. & Kéry, Marc & Morgan, Byron J.T. & Coray, Armin & Schaub, Michael & Baur, Bruno, 2021. "Integrated modelling of insect population dynamics at two temporal scales," Ecological Modelling, Elsevier, vol. 441(C).
    2. Gurutzeta Guillera-Arroita & José J. Lahoz-Monfort, 2017. "Species occupancy estimation and imperfect detection: shall surveys continue after the first detection?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 381-398, October.
    3. Zhang, Hongmei & Ghosh, Kaushik & Ghosh, Pulak, 2012. "Sampling designs via a multivariate hypergeometric-Dirichlet process model for a multi-species assemblage with unknown heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2562-2573.
    4. Nichols, J.M. & Spendelow, J.A. & Nichols, J.D., 2017. "Using Optimal Transport Theory to Estimate Transition Probabilities in Metapopulation Dynamics," Ecological Modelling, Elsevier, vol. 359(C), pages 311-319.
    5. Leo Polansky & Ken B. Newman & Lara Mitchell, 2021. "Improving inference for nonlinear state‐space models of animal population dynamics given biased sequential life stage data," Biometrics, The International Biometric Society, vol. 77(1), pages 352-361, March.
    6. Koo, Kyung Ah & Patten, Bernard C. & Teskey, Robert O. & Creed, Irena F., 2014. "Climate change effects on red spruce decline mitigated by reduction in air pollution within its shrinking habitat range," Ecological Modelling, Elsevier, vol. 293(C), pages 81-90.
    7. Ralf C Buckley & J Guy Castley & Fernanda de Vasconcellos Pegas & Alexa C Mossaz & Rochelle Steven, 2012. "A Population Accounting Approach to Assess Tourism Contributions to Conservation of IUCN-Redlisted Mammal Species," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-8, September.
    8. Blanca Sarzo & Ruth King & David Conesa & Jonas Hentati-Sundberg, 2021. "Correcting Bias in Survival Probabilities for Partially Monitored Populations via Integrated Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 200-219, June.
    9. Chiara Mazzetta & Steve Brooks & Stephen N. Freeman, 2007. "On Smoothing Trends in Population Index Modeling," Biometrics, The International Biometric Society, vol. 63(4), pages 1007-1014, December.
    10. Abadi, Fitsum & Gimenez, Olivier & Jakober, Hans & Stauber, Wolfgang & Arlettaz, Raphaël & Schaub, Michael, 2012. "Estimating the strength of density dependence in the presence of observation errors using integrated population models," Ecological Modelling, Elsevier, vol. 242(C), pages 1-9.
    11. José J. Lahoz-Monfort & Michael P. Harris & Sarah Wanless & Stephen N. Freeman & Byron J. T. Morgan, 2017. "Bringing It All Together: Multi-species Integrated Population Modelling of a Breeding Community," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 140-160, June.
    12. Simone Tenan & Paolo Pedrini & Natalia Bragalanti & Claudio Groff & Chris Sutherland, 2017. "Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-18, October.
    13. Soumen Dey & Mohan Delampady & Ravishankar Parameshwaran & N. Samba Kumar & Arjun Srivathsa & K. Ullas Karanth, 2017. "Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 111-139, June.
    14. Mosnier, A. & Doniol-Valcroze, T. & Gosselin, J.-F. & Lesage, V. & Measures, L.N. & Hammill, M.O., 2015. "Insights into processes of population decline using an integrated population model: The case of the St. Lawrence Estuary beluga (Delphinapterus leucas)," Ecological Modelling, Elsevier, vol. 314(C), pages 15-31.
    15. Ming Zhou & Rachel S. McCrea & Eleni Matechou & Diana J. Cole & Richard A. Griffiths, 2019. "Removal models accounting for temporary emigration," Biometrics, The International Biometric Society, vol. 75(1), pages 24-35, March.
    16. Gimenez, Olivier & Rossi, Vivien & Choquet, Rémi & Dehais, Camille & Doris, Blaise & Varella, Hubert & Vila, Jean-Pierre & Pradel, Roger, 2007. "State-space modelling of data on marked individuals," Ecological Modelling, Elsevier, vol. 206(3), pages 431-438.
    17. Michael J. Noonan & Chris Newman & Andrew Markham & Kirstin Bilham & Christina D. Buesching & David W. Macdonald, 2018. "In situ behavioral plasticity as compensation for weather variability: implications for future climate change," Climatic Change, Springer, vol. 149(3), pages 457-471, August.
    18. Barraquand, Frédéric & Gimenez, Olivier, 2019. "Integrating multiple data sources to fit matrix population models for interacting species," Ecological Modelling, Elsevier, vol. 411(C).
    19. Bing Wang & Su-Yan Pan & Ruo-Yu Ke & Ke Wang & Yi-Ming Wei, 2014. "An overview of climate change vulnerability: a bibliometric analysis based on Web of Science database," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1649-1666, December.
    20. R. B. O'Hara & S. Lampila & M. Orell, 2009. "Estimation of Rates of Births, Deaths, and Immigration from Mark–Recapture Data," Biometrics, The International Biometric Society, vol. 65(1), pages 275-281, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:475:y:2023:i:c:s030438002200309x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.