IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v149y2018i3d10.1007_s10584-018-2248-5.html
   My bibliography  Save this article

In situ behavioral plasticity as compensation for weather variability: implications for future climate change

Author

Listed:
  • Michael J. Noonan

    (National Zoological Park
    University of Oxford)

  • Chris Newman

    (University of Oxford)

  • Andrew Markham

    (University of Oxford)

  • Kirstin Bilham

    (University of Oxford)

  • Christina D. Buesching

    (University of Oxford)

  • David W. Macdonald

    (University of Oxford)

Abstract

While climatic effects on species biogeographic distributions are well documented, less mobile species must compensate for climate change in situ via behavioral plasticity. Despite this being a critical mechanism, behavioral plasticity is rarely modeled explicitly. Here, we use novel accelerometer and active-RFID transponder technology to quantify weather-driven modification of activity, mechanical energy expenditure, and ranging behavior, using the European badger as a model species. We then examine how these behaviors could respond to future climate change. From multi-model inference, activity was promoted significantly by a quadratic relationship with temperature, but inhibited by a quadratic relationship with humidity, and the amount of solar radiation. Drier conditions also encouraged more movement. Modeled against IPCC SRES low and high emissions climate change scenarios, milder and drier conditions projected for the next century would likely produce a change to badgers’ current phenology, with elevated levels of activity being maintained into the winter. This increased activity could necessitate up to a 15% increase in energy expenditure. Furthermore, conditions projected under the high emissions scenario may also lead to substantially increased movement, with implications for road traffic mortality rates. We contend that behavioral adaptation must be better incorporated into conservation strategies, versus the assumption of non-adaptive failure.

Suggested Citation

  • Michael J. Noonan & Chris Newman & Andrew Markham & Kirstin Bilham & Christina D. Buesching & David W. Macdonald, 2018. "In situ behavioral plasticity as compensation for weather variability: implications for future climate change," Climatic Change, Springer, vol. 149(3), pages 457-471, August.
  • Handle: RePEc:spr:climat:v:149:y:2018:i:3:d:10.1007_s10584-018-2248-5
    DOI: 10.1007/s10584-018-2248-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2248-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2248-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel F. Doak & William F. Morris, 2010. "Demographic compensation and tipping points in climate-induced range shifts," Nature, Nature, vol. 467(7318), pages 959-962, October.
    2. Luis-Miguel Chevin & Russell Lande & Georgina M Mace, 2010. "Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory," Working Papers id:2494, eSocialSciences.
    3. Barry Smit & Ian Burton & Richard Klein & J. Wandel, 2000. "An Anatomy of Adaptation to Climate Change and Variability," Climatic Change, Springer, vol. 45(1), pages 223-251, April.
    4. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    5. Luis-Miguel Chevin & Russell Lande & Georgina M Mace, 2010. "Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory," PLOS Biology, Public Library of Science, vol. 8(4), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    2. Harry R Harding & Timothy A C Gordon & Emma Eastcott & Stephen D Simpson & Andrew N Radford & Leigh Simmons, 2019. "Causes and consequences of intraspecific variation in animal responses to anthropogenic noise," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(6), pages 1501-1511.
    3. Brooks, Wesley R. & Newbold, Stephen C., 2014. "An updated biodiversity nonuse value function for use in climate change integrated assessment models," Ecological Economics, Elsevier, vol. 105(C), pages 342-349.
    4. Anderson, James J. & Gurarie, Eliezer & Bracis, Chloe & Burke, Brian J. & Laidre, Kristin L., 2013. "Modeling climate change impacts on phenology and population dynamics of migratory marine species," Ecological Modelling, Elsevier, vol. 264(C), pages 83-97.
    5. Matt J. Michel & Huicheng Chien & Collin E. Beachum & Micah G. Bennett & Jason H. Knouft, 2017. "Climate change, hydrology, and fish morphology: predictions using phenotype-environment associations," Climatic Change, Springer, vol. 140(3), pages 563-576, February.
    6. Davison, Raziel & Stadman, Marc & Jongejans, Eelke, 2019. "Stochastic effects contribute to population fitness differences," Ecological Modelling, Elsevier, vol. 408(C), pages 1-1.
    7. Bruno R Ribeiro & Lilian P Sales & Paulo De Marco Jr. & Rafael Loyola, 2016. "Assessing Mammal Exposure to Climate Change in the Brazilian Amazon," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    8. Robert J. Knell & Stephen J. Thackeray, 2016. "Voltinism and resilience to climate-induced phenological mismatch," Climatic Change, Springer, vol. 137(3), pages 525-539, August.
    9. Ralf C Buckley & J Guy Castley & Fernanda de Vasconcellos Pegas & Alexa C Mossaz & Rochelle Steven, 2012. "A Population Accounting Approach to Assess Tourism Contributions to Conservation of IUCN-Redlisted Mammal Species," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-8, September.
    10. Ayllón, Daniel & Railsback, Steven F. & Vincenzi, Simone & Groeneveld, Jürgen & Almodóvar, Ana & Grimm, Volker, 2016. "InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change," Ecological Modelling, Elsevier, vol. 326(C), pages 36-53.
    11. Freitas, Osmar & Araujo, Sabrina B.L. & Campos, Paulo R.A., 2022. "Speciation in a metapopulation model upon environmental changes," Ecological Modelling, Elsevier, vol. 468(C).
    12. Kumar Bahadur Darjee & Prem Raj Neupane & Michael Köhl, 2023. "Proactive Adaptation Responses by Vulnerable Communities to Climate Change Impacts," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
    13. Greenspoon, Philip B. & Mideo, Nicole, 2017. "Evolutionary rescue of a parasite population by mutation rate evolution," Theoretical Population Biology, Elsevier, vol. 117(C), pages 64-75.
    14. Zeyuan Qiu & Tony Prato, 2012. "Economic feasibility of adapting crop enterprises to future climate change: a case study of flexible scheduling and irrigation for representative farms in Flathead Valley, Montana, USA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(3), pages 223-242, March.
    15. Maldonado-Chaparro, Adriana A. & Read, Dwight W. & Blumstein, Daniel T., 2017. "Can individual variation in phenotypic plasticity enhance population viability?," Ecological Modelling, Elsevier, vol. 352(C), pages 19-30.
    16. Konstantinos Kougioumoutzis & Ioannis P. Kokkoris & Arne Strid & Thomas Raus & Panayotis Dimopoulos, 2021. "Climate-Change Impacts on the Southernmost Mediterranean Arctic-Alpine Plant Populations," Sustainability, MDPI, vol. 13(24), pages 1-23, December.
    17. Marie Rescan & Daphné Grulois & Enrique Ortega Aboud & Pierre de Villemereuil & Luis-Miguel Chevin, 2021. "Predicting population genetic change in an autocorrelated random environment: Insights from a large automated experiment," PLOS Genetics, Public Library of Science, vol. 17(6), pages 1-23, June.
    18. Yahuza Lurwanu & Yan-Ping Wang & Waheed Abdul & Jiasui Zhan & Li-Na Yang, 2020. "Temperature-Mediated Plasticity Regulates the Adaptation of Phytophthora infestans to Azoxystrobin Fungicide," Sustainability, MDPI, vol. 12(3), pages 1-15, February.
    19. Reid S. Brennan & James A. deMayo & Hans G. Dam & Michael B. Finiguerra & Hannes Baumann & Melissa H. Pespeni, 2022. "Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Karen B Strier & Anthony R Ives, 2012. "Unexpected Demography in the Recovery of an Endangered Primate Population," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-11, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:149:y:2018:i:3:d:10.1007_s10584-018-2248-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.