IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0223968.html
   My bibliography  Save this article

Using satellite-measured relative humidity for prediction of Metisa plana’s population in oil palm plantations: A comparative assessment of regression and artificial neural network models

Author

Listed:
  • Siti Aisyah Ruslan
  • Farrah Melissa Muharam
  • Zed Zulkafli
  • Dzolkhifli Omar
  • Muhammad Pilus Zambri

Abstract

Metisa plana (Walker) is a leaf defoliating pest that is able to cause staggering economical losses to oil palm cultivation. Considering the economic devastation that the pest could bring, an early warning system to predict its outbreak is crucial. The state of art of satellite technologies are now able to derive environmental factors such as relative humidity (RH) that may influence pest population’s fluctuations in rapid, harmless, and cost-effective manners. This study examined the relationship between the presence of Metisa plana at different time lags and remote sensing (RS) derived RH by using statistical and machine learning approaches. Metisa plana census data of cumulated larvae instar 1, 2, 3, and 4 were collected biweekly in 2014 and 2015 in an oil palm plantation in Muadzam Shah, Pahang, Malaysia. Relative humidity values derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images were apportioned to 6 time lags; 1 week (T1), 2 weeks (T2), 3 week (T3), 4 weeks (T4), 5 week (T5) and 6 weeks (T6) and paired with the respective census data. Pearson’s correlation was carried out to analyse the relationship between Metisa plana and RH at different time lags. Regression analyses and artificial neural network (ANN) were also conducted to develop the best prediction model of Metisa plana’s outbreak. The results showed relatively high correlations, positively or negatively, between the presences of Metisa plana with RH ranging from 0.46 to 0.99. ANN was found to be superior to regression models with the adjusted coefficient of determination (R2) between the actual and predicted Metisa plana values ranging from 0.06 to 0.57 versus 0.00 to 0.05. The analysis on the best time lags illustrated that the multiple time lags were more influential on the Metisa plana population than the individual time lags. The best Metisa plana prediction model was derived from T1, T2 and T3 multiple time lags modelled using the ANN algorithm with R2 value of 0.57, errors below 1.14 and accuracies above 93%. Based on the result of this study, the elucidation of Metisa plana’s landscape ecology was possible with the utilization of RH as the predictor variable in consideration of the time lag effects of RH on the pest’s population.

Suggested Citation

  • Siti Aisyah Ruslan & Farrah Melissa Muharam & Zed Zulkafli & Dzolkhifli Omar & Muhammad Pilus Zambri, 2019. "Using satellite-measured relative humidity for prediction of Metisa plana’s population in oil palm plantations: A comparative assessment of regression and artificial neural network models," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-15, October.
  • Handle: RePEc:plo:pone00:0223968
    DOI: 10.1371/journal.pone.0223968
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223968
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0223968&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0223968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Blum, Moshe & Nestel, David & Cohen, Yafit & Goldshtein, Eitan & Helman, David & Lensky, Itamar M., 2018. "Predicting Heliothis (Helicoverpa armigera) pest population dynamics with an age-structured insect population model driven by satellite data," Ecological Modelling, Elsevier, vol. 369(C), pages 1-12.
    2. Blum, Moshe & Lensky, Itamar M. & Rempoulakis, Polychronis & Nestel, David, 2015. "Modeling insect population fluctuations with satellite land surface temperature," Ecological Modelling, Elsevier, vol. 311(C), pages 39-47.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Augustinus, Benno A. & Blum, Moshe & Citterio, Sandra & Gentili, Rodolfo & Helman, David & Nestel, David & Schaffner, Urs & Müller-Schärer, Heinz & Lensky, Itamar M., 2022. "Ground-truthing predictions of a demographic model driven by land surface temperatures with a weed biocontrol cage experiment," Ecological Modelling, Elsevier, vol. 466(C).
    2. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    3. Blum, Moshe & Nestel, David & Cohen, Yafit & Goldshtein, Eitan & Helman, David & Lensky, Itamar M., 2018. "Predicting Heliothis (Helicoverpa armigera) pest population dynamics with an age-structured insect population model driven by satellite data," Ecological Modelling, Elsevier, vol. 369(C), pages 1-12.
    4. Pasquali, S. & Soresina, C. & Marchesini, E., 2022. "Mortality estimate driven by population abundance field data in a stage-structured demographic model. The case of Lobesia botrana," Ecological Modelling, Elsevier, vol. 464(C).
    5. Neta, Ayana & Levi, Yoav & Morin, Efrat & Morin, Shai, 2023. "Seasonal forecasting of pest population dynamics based on downscaled SEAS5 forecasts," Ecological Modelling, Elsevier, vol. 480(C).
    6. Pasquali, S. & Soresina, C. & Gilioli, G., 2019. "The effects of fecundity, mortality and distribution of the initial condition in phenological models," Ecological Modelling, Elsevier, vol. 402(C), pages 45-58.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0223968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.