IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v384y2018icp23-29.html
   My bibliography  Save this article

Disequilibrium and relaxation times for species responses to climate change

Author

Listed:
  • Loehle, Craig

Abstract

Climate change is widely expected to pose a threat to many of Earth’s plant and animal species. Based on climate models, a multitude of studies project that certain species will not be able to migrate fast enough to keep up with changing environmental conditions, presenting a greater risk of their possible extinction. However, many of these studies are based on correlative climate niche models that represent the current living conditions of species and may not consider their ability to tolerate projected changes in future climate, including the stimulative effects of rising CO2 for plant growth and drought tolerance. SDMs also are not usually run with sufficiently detailed spatial data to account for refugia. These and other aspects of model-based niche studies can potentially combine to mischaracterize the risk to species due to climate change. Even a SDM that perfectly predicts future equilibrium geographic range following climate change, however, does not yield a direct estimate of extinction risk. The key question is “What is the transient response to a climate disequilibrium situation?” The concept of relaxation is introduced to evaluate time-scales for responses at the trailing edge of species’ ranges. Simulation of relaxation at a forest ecotone shows the relaxation response in some cases can be hundreds of years. A classification of relaxation responses based on tolerance and dispersal ability is proposed as a second stage analysis for SDM studies.

Suggested Citation

  • Loehle, Craig, 2018. "Disequilibrium and relaxation times for species responses to climate change," Ecological Modelling, Elsevier, vol. 384(C), pages 23-29.
  • Handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:23-29
    DOI: 10.1016/j.ecolmodel.2018.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holloway, Paul & Miller, Jennifer A., 2017. "A quantitative synthesis of the movement concepts used within species distribution modelling," Ecological Modelling, Elsevier, vol. 356(C), pages 91-103.
    2. Chris D. Thomas & Mark Williamson, 2012. "Extinction and climate change," Nature, Nature, vol. 482(7386), pages 4-5, February.
    3. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    4. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    5. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    6. Scott R. Loarie & Philip B. Duffy & Healy Hamilton & Gregory P. Asner & Christopher B. Field & David D. Ackerly, 2009. "The velocity of climate change," Nature, Nature, vol. 462(7276), pages 1052-1055, December.
    7. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    8. Craig Loehle, 2014. "Climate Change is Unlikely to Cause a Biodiversity Crisis: Evidence from Northen Latitude Tree Responses to Warming," Energy & Environment, , vol. 25(1), pages 147-153, February.
    9. Trevor H. Booth, 2017. "Assessing species climatic requirements beyond the realized niche: some lessons mainly from tree species distribution modelling," Climatic Change, Springer, vol. 145(3), pages 259-271, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bosi, Stefano & Desmarchelier, David, 2018. "An economic model of metapopulation dynamics," Ecological Modelling, Elsevier, vol. 387(C), pages 196-204.
    2. Federico Benjamín Galacho-Jiménez & Pablo Quesada-Molina & David Carruana-Herrera & Sergio Reyes-Corredera, 2022. "Application of the Analysis Time Series and Multispectral Images for the Estimation of the Conditions of the Vegetation Covers of the Natural Areas of Southern Spain," Land, MDPI, vol. 12(1), pages 1-33, December.
    3. Schratz, Patrick & Muenchow, Jannes & Iturritxa, Eugenia & Richter, Jakob & Brenning, Alexander, 2019. "Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data," Ecological Modelling, Elsevier, vol. 406(C), pages 109-120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuncheng Zhao & Mingyue Zhao & Lei Zhang & Chunyi Wang & Yinlong Xu, 2021. "Predicting Possible Distribution of Tea ( Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China," Agriculture, MDPI, vol. 11(11), pages 1-18, November.
    2. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    3. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    4. Sara J. Germain & James A. Lutz, 2020. "Climate extremes may be more important than climate means when predicting species range shifts," Climatic Change, Springer, vol. 163(1), pages 579-598, November.
    5. Jahan Zeb Khan & Muhammad Zaheer, 2018. "Impacts Of Environmental Changeability And Human Activities On Hydrological Processes And Response ," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 1(1), pages 13-17, June.
    6. Thurner, Stephanie D & Converse, Sarah J & Branch, Trevor A, 2021. "Modeling opportunistic exploitation: increased extinction risk when targeting more than one species," Ecological Modelling, Elsevier, vol. 454(C).
    7. Takuya Iwamura & Kerrie A Wilson & Oscar Venter & Hugh P Possingham, 2010. "A Climatic Stability Approach to Prioritizing Global Conservation Investments," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    8. Dudley, Peter N. & Bonazza, Riccardo & Porter, Warren P., 2016. "Climate change impacts on nesting and internesting leatherback sea turtles using 3D animated computational fluid dynamics and finite volume heat transfer," Ecological Modelling, Elsevier, vol. 320(C), pages 231-240.
    9. Brooks, Wesley R. & Newbold, Stephen C., 2014. "An updated biodiversity nonuse value function for use in climate change integrated assessment models," Ecological Economics, Elsevier, vol. 105(C), pages 342-349.
    10. Drielsma, Michael J. & Love, Jamie & Williams, Kristen J. & Manion, Glenn & Saremi, Hanieh & Harwood, Tom & Robb, Janeen, 2017. "Bridging the gap between climate science and regional-scale biodiversity conservation in south-eastern Australia," Ecological Modelling, Elsevier, vol. 360(C), pages 343-362.
    11. Chuansheng Wang & Guiyan Sun & Lijuan Dang, 2015. "Identifying Ecological Red Lines: A Case Study of the Coast in Liaoning Province," Sustainability, MDPI, vol. 7(7), pages 1-17, July.
    12. Denis Réale & Mahdi Khelfaoui & Pierre-Olivier Montiglio & Yves Gingras, 2020. "Mapping the dynamics of research networks in ecology and evolution using co-citation analysis (1975–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1361-1385, March.
    13. Dragomir, Lucian & Dragomir, Robert, 2019. "Climate Change And Its Interaction With Natural, Economic And Social Processes," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 19(2), pages 125-138.
    14. Ko, Chia-Ying & Root, Terry L. & Lee, Pei-Fen, 2011. "Movement distances enhance validity of predictive models," Ecological Modelling, Elsevier, vol. 222(4), pages 947-954.
    15. Reed Noss, 2011. "Between the devil and the deep blue sea: Florida’s unenviable position with respect to sea level rise," Climatic Change, Springer, vol. 107(1), pages 1-16, July.
    16. Watts, Michael J. & Fordham, Damien A. & Akçakaya, H. Resit & Aiello-Lammens, Matthew E. & Brook, Barry W., 2013. "Tracking shifting range margins using geographical centroids of metapopulations weighted by population density," Ecological Modelling, Elsevier, vol. 269(C), pages 61-69.
    17. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    18. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    19. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    20. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:23-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.