IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v354y2017icp11-19.html
   My bibliography  Save this article

Effects of species prevalence on the performance of predictive models

Author

Listed:
  • Sor, Ratha
  • Park, Young-Seuk
  • Boets, Pieter
  • Goethals, Peter L.M.
  • Lek, Sovan

Abstract

Predictive models are useful to support decision making, management and conservation planning. However, the performance of models varies across techniques and is affected by several factors including species prevalence (i.e. the occurrence rate of each species in the total samples). Here, we analysed and compared the performance of four common modelling techniques based on the species prevalence. The occurrence of macroinvertebrates collected at 63 sites along the Lower Mekong Basin was predicted using Logistic Regression, Random Forest, Support Vector Machine and Artificial Neural Network (ANN). Model performance was evaluated using Cohen’s Kappa Statistic (Kappa), area under receiver operating characteristic curve (AUC) and error rate. We found a highly significant quadratic effect of species prevalence on the four modelling techniques’ performance. Kappa and AUC were less depended on the species prevalence, making them a better measure. The best performance (Kappa and AUC) was reached when predicting species with an intermediate prevalence (e.g. 0.4–0.6). The four modelling techniques significantly yielded different performances (p<0.01), of which ANN performed generally better when using the complete prevalence range (i.e. 0.0–1.0) and the lower prevalence range (i.e. <0.1). However, the four techniques similarly performed when predicting species with a higher prevalence range (i.e. ≥0.3). Our results provide useful insights into the application of modelling techniques in predicting species occurrence and how their performance varies for species with different prevalence ranges. We suggest that the selection of appropriate modelling techniques should carefully take into account the species prevalence, particularly in the case of rare and generalist species.

Suggested Citation

  • Sor, Ratha & Park, Young-Seuk & Boets, Pieter & Goethals, Peter L.M. & Lek, Sovan, 2017. "Effects of species prevalence on the performance of predictive models," Ecological Modelling, Elsevier, vol. 354(C), pages 11-19.
  • Handle: RePEc:eee:ecomod:v:354:y:2017:i:c:p:11-19
    DOI: 10.1016/j.ecolmodel.2017.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016304367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lencioni, Valeria & Maiolini, Bruno & Marziali, Laura & Lek, Sovan & Rossaro, Bruno, 2007. "Macroinvertebrate assemblages in glacial stream systems: A comparison of linear multivariate methods with artificial neural networks," Ecological Modelling, Elsevier, vol. 203(1), pages 119-131.
    2. Stokland, Jogeir N. & Halvorsen, Rune & Støa, Bente, 2011. "Species distribution modelling—Effect of design and sample size of pseudo-absence observations," Ecological Modelling, Elsevier, vol. 222(11), pages 1800-1809.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Na & Niu, Jun & Kang, Shaozhong & Singh, Shailesh Kumar & Du, Taisheng, 2021. "A hybrid PCA-SEM-ANN model for the prediction of water use efficiency," Ecological Modelling, Elsevier, vol. 460(C).
    2. Simon, Alois & Katzensteiner, Klaus & Wallentin, Gudrun, 2023. "The integration of hierarchical levels of scale in tree species distribution models of silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.) in mountain forests," Ecological Modelling, Elsevier, vol. 485(C).
    3. Caradima, Bogdan & Scheidegger, Andreas & Brodersen, Jakob & Schuwirth, Nele, 2021. "Bridging mechanistic conceptual models and statistical species distribution models of riverine fish," Ecological Modelling, Elsevier, vol. 457(C).
    4. Benkendorf, Donald J. & Schwartz, Samuel D. & Cutler, D. Richard & Hawkins, Charles P., 2023. "Correcting for the effects of class imbalance improves the performance of machine-learning based species distribution models," Ecological Modelling, Elsevier, vol. 483(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iturbide, Maialen & Bedia, Joaquín & Herrera, Sixto & del Hierro, Oscar & Pinto, Miriam & Gutiérrez, Jose Manuel, 2015. "A framework for species distribution modelling with improved pseudo-absence generation," Ecological Modelling, Elsevier, vol. 312(C), pages 166-174.
    2. Liang, Wanwan & Papeş, Monica & Tran, Liem & Grant, Jerome & Washington-Allen, Robert & Stewart, Scott & Wiggins, Gregory, 2018. "The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift," Ecological Modelling, Elsevier, vol. 388(C), pages 1-9.
    3. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    4. Schartel, Tyler E. & Cao, Yong, 2024. "Background selection complexity influences Maxent predictive performance in freshwater systems," Ecological Modelling, Elsevier, vol. 488(C).
    5. Coro, Gianpaolo & Pagano, Pasquale & Ellenbroek, Anton, 2013. "Combining simulated expert knowledge with Neural Networks to produce Ecological Niche Models for Latimeria chalumnae," Ecological Modelling, Elsevier, vol. 268(C), pages 55-63.
    6. Halvorsen, Rune & Mazzoni, Sabrina & Dirksen, John Wirkola & Næsset, Erik & Gobakken, Terje & Ohlson, Mikael, 2016. "How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?," Ecological Modelling, Elsevier, vol. 328(C), pages 108-118.
    7. Gutiérrez-Estrada, Juan C. & Bilton, David T., 2010. "A heuristic approach to predicting water beetle diversity in temporary and fluctuating waters," Ecological Modelling, Elsevier, vol. 221(11), pages 1451-1462.
    8. Domisch, Sami & Kuemmerlen, Mathias & Jähnig, Sonja C. & Haase, Peter, 2013. "Choice of study area and predictors affect habitat suitability projections, but not the performance of species distribution models of stream biota," Ecological Modelling, Elsevier, vol. 257(C), pages 1-10.
    9. Kuemmerlen, Mathias & Schmalz, Britta & Guse, Björn & Cai, Qinghua & Fohrer, Nicola & Jähnig, Sonja C., 2014. "Integrating catchment properties in small scale species distribution models of stream macroinvertebrates," Ecological Modelling, Elsevier, vol. 277(C), pages 77-86.
    10. Abel Chemura & Dumisani Kutywayo & Danisile Hikwa & Christoph Gornott, 2022. "Climate change and cocoyam (Colocasia esculenta (L.) Schott) production: assessing impacts and potential adaptation strategies in Zimbabwe," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:354:y:2017:i:c:p:11-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.