IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v460y2021ics0304380021003033.html
   My bibliography  Save this article

A hybrid PCA-SEM-ANN model for the prediction of water use efficiency

Author

Listed:
  • Lu, Na
  • Niu, Jun
  • Kang, Shaozhong
  • Singh, Shailesh Kumar
  • Du, Taisheng

Abstract

This study employs a Structural Equation Model (SEM), Principal Component Analysis (PCA) and Artificial Neural Network (ANN) to construct a hybrid PCA-SEM-ANN model, for the prediction of Water Use Efficiency (WUE). The structural relationship and the degree of influence among factors is determined by SEM, and is transformed into ANN's topology, where PCA is employed to reduce spatial dimensionality. The applied results, in Kashgar, Xinjiang, China, show that different influencing factors on WUE present a diversity with different levels. The ANN structure optimized by SEM fits better, and the PCA-SEM-ANN model has high explanatory and precision for environmental control of the ecosystem as well as WUE simulation. The model can be widely applied to the vegetation ecosystem in the entire Xinjiang or elsewhere, providing a theoretical basis and a simulation method for improving the efficient water use capacity as well as predicting the future response of WUE to climate change.

Suggested Citation

  • Lu, Na & Niu, Jun & Kang, Shaozhong & Singh, Shailesh Kumar & Du, Taisheng, 2021. "A hybrid PCA-SEM-ANN model for the prediction of water use efficiency," Ecological Modelling, Elsevier, vol. 460(C).
  • Handle: RePEc:eee:ecomod:v:460:y:2021:i:c:s0304380021003033
    DOI: 10.1016/j.ecolmodel.2021.109754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021003033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Chenyu & Zhang, Haiping, 2020. "Study on turbidity prediction method of reservoirs based on long short term memory neural network," Ecological Modelling, Elsevier, vol. 432(C).
    2. Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2015. "Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1093-1106.
    3. Deutsch, Eliza S. & Alameddine, Ibrahim & Qian, Song S., 2020. "Using structural equation modeling to better understand microcystis biovolume dynamics in a mediterranean hypereutrophic reservoir," Ecological Modelling, Elsevier, vol. 435(C).
    4. Wang, Tongxin & Tang, Xuguang & Zheng, Chen & Gu, Qing & Wei, Jin & Ma, Mingguo, 2018. "Differences in ecosystem water-use efficiency among the typical croplands," Agricultural Water Management, Elsevier, vol. 209(C), pages 142-150.
    5. Sor, Ratha & Park, Young-Seuk & Boets, Pieter & Goethals, Peter L.M. & Lek, Sovan, 2017. "Effects of species prevalence on the performance of predictive models," Ecological Modelling, Elsevier, vol. 354(C), pages 11-19.
    6. Kim, Hyo Gyeom & Hong, Sungwon & Jeong, Kwang-Seuk & Kim, Dong-Kyun & Joo, Gea-Jae, 2019. "Determination of sensitive variables regardless of hydrological alteration in artificial neural network model of chlorophyll a: Case study of Nakdong River," Ecological Modelling, Elsevier, vol. 398(C), pages 67-76.
    7. Zhu, Qiuan & Jiang, Hong & Peng, Changhui & Liu, Jinxun & Wei, Xiaohua & Fang, Xiuqin & Liu, Shirong & Zhou, Guomo & Yu, Shuquan, 2011. "Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China," Ecological Modelling, Elsevier, vol. 222(14), pages 2414-2429.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiang-nan & Li, Fang & Wu, Feng-ping & Xu, Xia & Zhao, Yue, 2023. "Initial water rights allocation of Industry in the Yellow River basin driven by high-quality development," Ecological Modelling, Elsevier, vol. 477(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimas de Barros Santiago & Humberto Alves Barbosa & Washington Luiz Félix Correia Filho & José Francisco de Oliveira-Júnior & Franklin Paredes-Trejo & Catarina de Oliveira Buriti, 2022. "Variability of Water Use Efficiency Associated with Climate Change in the Extreme West of Bahia," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    2. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    3. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    4. Mohammed Achite & Saeed Samadianfard & Nehal Elshaboury & Milad Sharafi, 2023. "Modeling and optimization of coagulant dosage in water treatment plants using hybridized random forest model with genetic algorithm optimization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11189-11207, October.
    5. Wenxiang, Ding & Caiyun, Zhang & Shaoping, Shang & Xueding, Li, 2022. "Optimization of deep learning model for coastal chlorophyll a dynamic forecast," Ecological Modelling, Elsevier, vol. 467(C).
    6. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2017. "Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 496-511.
    7. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    8. Ji Zhang & Shiqi Yang & Shengtian Yang & Li Fan & Xu Zhou, 2023. "Spatio-Temporal Variations of Ecosystem Water Use Efficiency and Its Drivers in Southwest China," Land, MDPI, vol. 12(2), pages 1-15, February.
    9. Qing Gu & Hui Zheng & Li Yao & Min Wang & Mingguo Ma & Xufeng Wang & Xuguang Tang, 2020. "Performance of the Remotely-Derived Products in Monitoring Gross Primary Production across Arid and Semi-Arid Ecosystems in Northwest China," Land, MDPI, vol. 9(9), pages 1-16, August.
    10. Fei Chen & Ningbo Cui & Yaowei Huang & Xiaotao Hu & Daozhi Gong & Yaosheng Wang & Min Lv & Shouzheng Jiang, 2021. "Investigating the Patterns and Controls of Ecosystem Light Use Efficiency with the Data from the Global Farmland Fluxdata Network," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    11. Ouyang, Lei & Lu, Longwei & Wang, Chunlin & Li, Yanqiong & Wang, Jingyi & Zhao, Xiuhua & Gao, Lei & Zhu, Liwei & Ni, Guangyan & Zhao, Ping, 2022. "A 14-year experiment emphasizes the important role of heat factors in regulating tree transpiration, growth, and water use efficiency of Schima superba in South China," Agricultural Water Management, Elsevier, vol. 273(C).
    12. Pang, Jiaping & Li, Hengpeng & Yu, Fuhe & Geng, Jianwei & Zhang, Wangshou, 2022. "Environmental controls on water use efficiency in a hilly tea plantation in southeast China," Agricultural Water Management, Elsevier, vol. 269(C).
    13. Chen, Yanan & Ding, Zhi & Yu, Pujia & Yang, Hong & Song, Lisheng & Fan, Lei & Han, Xujun & Ma, Mingguo & Tang, Xuguang, 2022. "Quantifying the variability in water use efficiency from the canopy to ecosystem scale across main croplands," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Bugała, A. & Zaborowicz, M. & Boniecki, P. & Janczak, D. & Koszela, K. & Czekała, W. & Lewicki, A., 2018. "Short-term forecast of generation of electric energy in photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 306-312.
    15. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.
    17. Huang, Runya & Huang, Guohe & Cheng, Guanhui & Dong, Cong, 2017. "Regional heuristic interval recourse power system analysis for electricity and environmental systems planning in Eastern China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 185-201.
    18. Benkendorf, Donald J. & Schwartz, Samuel D. & Cutler, D. Richard & Hawkins, Charles P., 2023. "Correcting for the effects of class imbalance improves the performance of machine-learning based species distribution models," Ecological Modelling, Elsevier, vol. 483(C).
    19. Kevin De Haan & Myroslava Khomik & Adam Green & Warren Helgason & Merrin L. Macrae & Mazda Kompanizare & Richard M. Petrone, 2021. "Assessment of Different Water Use Efficiency Calculations for Dominant Forage Crops in the Great Lakes Basin," Agriculture, MDPI, vol. 11(8), pages 1-19, August.
    20. Li, Haoyu & Zhang, Yuanhong & Zhang, Qi & Ahmad, Naeem & Liu, Pengzhao & Wang, Rui & Li, Jun & Wang, Xiaoli, 2021. "Converting continuous cropping to rotation including subsoiling improves crop yield and prevents soil water deficit: A 12-yr in-situ study in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 256(C).

    More about this item

    Keywords

    SEM; PCA; ANN; WUE; Vegetation ecosystem;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:460:y:2021:i:c:s0304380021003033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.