IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v203y2007i1p119-131.html
   My bibliography  Save this article

Macroinvertebrate assemblages in glacial stream systems: A comparison of linear multivariate methods with artificial neural networks

Author

Listed:
  • Lencioni, Valeria
  • Maiolini, Bruno
  • Marziali, Laura
  • Lek, Sovan
  • Rossaro, Bruno

Abstract

The distribution of 19 macroinvertebrate taxa was related to 36 environmental variables in 3 Alpine glacial streams. Principal component analysis (PCA) and a self-organising map (SOM) were used to ordinate sample sites according to community composition. Multiple linear regression (MLR) was carried out with the environmental variables as predictors and each macroinvertebrate taxon as criterion variable, a multilayer perceptron (MLP) used the environmental variables as input neurons and each taxon as output neuron. The contribution of each environmental variable to macroinvertebrate response was quantified examining MLR regression coefficients and compared with partial derivative (Pad) and connection weights approach (CW) methods. PCA and SOM emphasized a difference between glacial (kryal) and non-glacial (krenal and rhithral) stations. Canonical correlation analysis (CANCOR) confirmed this separation, outlining the environmental variables (altitude, distance from source and water temperature) which contributed most with macroinvertebrates to site ordination. SOM clustered kryal, rhithral and krenal in three well separated group of sites. MLR and MLP detected the best predictors of macroinvertebrate response. Pad sensitivity analysis and CW method emphasized the importance of water chemistry and substrate in determining the response of taxa, the importance of substrate was overlooked by linear multivariate analysis (MLR).

Suggested Citation

  • Lencioni, Valeria & Maiolini, Bruno & Marziali, Laura & Lek, Sovan & Rossaro, Bruno, 2007. "Macroinvertebrate assemblages in glacial stream systems: A comparison of linear multivariate methods with artificial neural networks," Ecological Modelling, Elsevier, vol. 203(1), pages 119-131.
  • Handle: RePEc:eee:ecomod:v:203:y:2007:i:1:p:119-131
    DOI: 10.1016/j.ecolmodel.2006.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380006005631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2006.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sor, Ratha & Park, Young-Seuk & Boets, Pieter & Goethals, Peter L.M. & Lek, Sovan, 2017. "Effects of species prevalence on the performance of predictive models," Ecological Modelling, Elsevier, vol. 354(C), pages 11-19.
    2. GutiƩrrez-Estrada, Juan C. & Bilton, David T., 2010. "A heuristic approach to predicting water beetle diversity in temporary and fluctuating waters," Ecological Modelling, Elsevier, vol. 221(11), pages 1451-1462.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:203:y:2007:i:1:p:119-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.