IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v27y2022i6d10.1007_s11027-022-10014-9.html
   My bibliography  Save this article

Climate change and cocoyam (Colocasia esculenta (L.) Schott) production: assessing impacts and potential adaptation strategies in Zimbabwe

Author

Listed:
  • Abel Chemura

    (Potsdam Institute of Climate Impact Research, a Member of the Leibniz Association)

  • Dumisani Kutywayo

    (Department of Research & Specialist Services Head Office)

  • Danisile Hikwa

    (Department of Research & Specialist Services Head Office)

  • Christoph Gornott

    (Potsdam Institute of Climate Impact Research, a Member of the Leibniz Association
    University of Kassel)

Abstract

Tropical root and tuber crops such as cocoyam (Colocasia esculenta (L.)) are important for food security and livelihoods and yet neglected in climate change impact studies and large-scale crop improvement programs. The aim of this study was to apply the maximum entropy modelling approach to assess production potential for the orphan crop cocoyam under current and projected climatic conditions by 2050 and 2070 in Zimbabwe. A robust model fit was achieved (AUC > 0.9) with variable importance showing that precipitation-related factors were most important in determining the suitability of cocoyam. About 4.3% of the country is suitable for cocoyam production in Zimbabwe under current climatic conditions with the most suitable areas in eastern districts of Chipinge, Chimanimani, Mutare, Mutasa, Nyanga and Makoni. By 2050, model means project a decrease of 6%, 9%, 10% and 15% under RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively. More drastic decreases are projected by 2070 with almost a quarter (23%) of the current suitable areas having lost their suitability for cocoyam production. There is a general model agreement in the direction of impacts except for RCP2.6 where CCSM4 model projects increases in suitability for cocoyam in the country while other models project decreases. We find that regulating canopy microclimate variation increases potential for cocoyam production under climate change and can be implemented to ensure resilience of cocoyam production systems. Therefore, stabilizing or improving orphan crops systems will substantially contribute to local food security and reduction of malnutrition especially during the lean season.

Suggested Citation

  • Abel Chemura & Dumisani Kutywayo & Danisile Hikwa & Christoph Gornott, 2022. "Climate change and cocoyam (Colocasia esculenta (L.) Schott) production: assessing impacts and potential adaptation strategies in Zimbabwe," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-20, August.
  • Handle: RePEc:spr:masfgc:v:27:y:2022:i:6:d:10.1007_s11027-022-10014-9
    DOI: 10.1007/s11027-022-10014-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-022-10014-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-022-10014-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miller, Daniel C. & Muñoz-Mora, Juan Carlos & Christiaensen, Luc, 2017. "Prevalence, economic contribution, and determinants of trees on farms across Sub-Saharan Africa," Forest Policy and Economics, Elsevier, vol. 84(C), pages 47-61.
    2. Mabhaudhi, T. & Chimonyo, V. G. P. & Hlahla, S. & Massawe, F. & Mayes, S. & Nhamo, Luxon & Modi, A. T., 2019. "Prospects of orphan crops in climate change," Papers published in Journals (Open Access), International Water Management Institute, pages 250(3):695-.
    3. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    4. Mabhaudhi, T. & Modi, A.T. & Beletse, Y.G., 2013. "Response of taro (Colocasia esculenta L. Schott) landraces to varying water regimes under a rainshelter," Agricultural Water Management, Elsevier, vol. 121(C), pages 102-112.
    5. Jan Beck, 2013. "Predicting climate change effects on agriculture from ecological niche modeling: who profits, who loses?," Climatic Change, Springer, vol. 116(2), pages 177-189, January.
    6. Paul Evangelista & Nicholas Young & Jonathan Burnett, 2013. "How will climate change spatially affect agriculture production in Ethiopia? Case studies of important cereal crops," Climatic Change, Springer, vol. 119(3), pages 855-873, August.
    7. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    8. Davinder Singh & Grahame Jackson & Danny Hunter & Robert Fullerton & Vincent Lebot & Mary Taylor & Tolo Iosefa & Tom Okpul & Joy Tyson, 2012. "Taro Leaf Blight—A Threat to Food Security," Agriculture, MDPI, vol. 2(3), pages 1-22, July.
    9. Peter B. Reich & Sarah E. Hobbie, 2013. "Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass," Nature Climate Change, Nature, vol. 3(3), pages 278-282, March.
    10. Stokland, Jogeir N. & Halvorsen, Rune & Støa, Bente, 2011. "Species distribution modelling—Effect of design and sample size of pseudo-absence observations," Ecological Modelling, Elsevier, vol. 222(11), pages 1800-1809.
    11. Anderson, Robert P. & Gonzalez, Israel, 2011. "Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent," Ecological Modelling, Elsevier, vol. 222(15), pages 2796-2811.
    12. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Schultze & Stephen Kankam & Safiétou Sanfo & Christine Fürst, 2024. "Agricultural Yield Responses to Climate Variabilities in West Africa: A Food Supply and Demand Analysis," Land, MDPI, vol. 13(3), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halvorsen, Rune & Mazzoni, Sabrina & Dirksen, John Wirkola & Næsset, Erik & Gobakken, Terje & Ohlson, Mikael, 2016. "How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?," Ecological Modelling, Elsevier, vol. 328(C), pages 108-118.
    2. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    3. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    4. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    5. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Department of Economics Working Papers 2019-04, Department of Economics, Williams College.
    6. Alison Rothwell & Brad Ridoutt & William Bellotti, 2016. "Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios," Land, MDPI, vol. 5(4), pages 1-23, December.
    7. Moreno-Amat, Elena & Mateo, Rubén G. & Nieto-Lugilde, Diego & Morueta-Holme, Naia & Svenning, Jens-Christian & García-Amorena, Ignacio, 2015. "Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data," Ecological Modelling, Elsevier, vol. 312(C), pages 308-317.
    8. Farahmand, Shekoofeh & Hilmi, Nathalie & Cinar, Mine & Safa, Alain & Lam, Vicky W.Y. & Djoundourian, Salpie & Shahin, Wassim & Ben Lamine, Emna & Schickele, Alexandre & Guidetti, Paolo & Allemand, Den, 2023. "Climate change impacts on Mediterranean fisheries: A sensitivity and vulnerability analysis for main commercial species," Ecological Economics, Elsevier, vol. 211(C).
    9. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    10. Jose A. Marengo & Ana Paula M. A. Cunha & Carlos A. Nobre & Germano G. Ribeiro Neto & Antonio R. Magalhaes & Roger R. Torres & Gilvan Sampaio & Felipe Alexandre & Lincoln M. Alves & Luz A. Cuartas & K, 2020. "Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2589-2611, September.
    11. Allison Thomson & Katherine Calvin & Steven Smith & G. Kyle & April Volke & Pralit Patel & Sabrina Delgado-Arias & Ben Bond-Lamberty & Marshall Wise & Leon Clarke & James Edmonds, 2011. "RCP4.5: a pathway for stabilization of radiative forcing by 2100," Climatic Change, Springer, vol. 109(1), pages 77-94, November.
    12. Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
    13. Yann Chavaillaz & Sylvie Joussaume & Amaury Dehecq & Pascale Braconnot & Robert Vautard, 2016. "Investigating the pace of temperature change and its implications over the twenty-first century," Climatic Change, Springer, vol. 137(1), pages 187-200, July.
    14. Jia-Min Jiang & Lei Jin & Lei Huang & Wen-Ting Wang, 2022. "The Future Climate under Different CO 2 Emission Scenarios Significantly Influences the Potential Distribution of Achnatherum inebrians in China," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    15. Gaudard, Ludovic, 2015. "Pumped-storage project: A short to long term investment analysis including climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 91-99.
    16. Ram Singh & K. AchutaRao, 2020. "Sensitivity of future climate change and uncertainty over India to performance-based model weighting," Climatic Change, Springer, vol. 160(3), pages 385-406, June.
    17. Habtemariam, Lemlem Teklegiorgis & Abate Kassa, Getachew & Gandorfer, Markus, 2017. "Impact of climate change on farms in smallholder farming systems: Yield impacts, economic implications and distributional effects," Agricultural Systems, Elsevier, vol. 152(C), pages 58-66.
    18. Schartel, Tyler E. & Cao, Yong, 2024. "Background selection complexity influences Maxent predictive performance in freshwater systems," Ecological Modelling, Elsevier, vol. 488(C).
    19. Santiago José Elías Velazco & Franklin Galvão & Fabricio Villalobos & Paulo De Marco Júnior, 2017. "Using worldwide edaphic data to model plant species niches: An assessment at a continental extent," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-24, October.
    20. Hemalatha Palanivel & Shipra Shah, 2021. "Unlocking the inherent potential of plant genetic resources: food security and climate adaptation strategy in Fiji and the Pacific," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14264-14323, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:27:y:2022:i:6:d:10.1007_s11027-022-10014-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.