IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-02301711.html
   My bibliography  Save this paper

The Value of Biodiversity as an Insurance Device

Author

Listed:
  • Emmanuelle Augeraud-Véron

    (MIA - Mathématiques, Image et Applications - EA 3165 - ULR - La Rochelle Université, GREThA - Groupe de Recherche en Economie Théorique et Appliquée - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique)

  • Giorgio Fabbri

    (GAEL - Laboratoire d'Economie Appliquée de Grenoble - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - INRA - Institut National de la Recherche Agronomique - CNRS - Centre National de la Recherche Scientifique - UGA [2016-2019] - Université Grenoble Alpes [2016-2019])

  • Katheline Schubert

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper presents a benchmark stochastic endogenous growth model of an agricultural economy. Producing food requires land, and increasing the share of total land devoted to farming mechanically reduces the share of land devoted to biodiversity conservation. However, safeguarding a greater number of species guarantees better ecosystem services, which in turn ensure lower volatility of agricultural productivity. The optimal conversion/conservation rule is explicitly characterized. Value of biodiversity is considered in its function of hedging against the volatility of agricultural production. Two aspects of biodiversity's value are examined. We first consider the total value of biodiversity as the welfare gain from biodiversity conservation, that is, the percentage increase in consumption that the society is willing to accept to give up the optimal level of biodiversity in favor of no biodiversity at all. We then consider the insurance value of biodiversity, extending the usual concepts to our stochastic dynamic framework, defining the insurance value of biodiversity as the change of the risk premium due to a marginal change in the level of biodiversity. To highlight the impact of risk on the optimal decision as in the value of biodiversity, we use the Epstein-Zin-Weil specification of preferences and represent preferences by a recursive utility function. This allows us to disentangle the effects of risk aversion and aversion to fluctuations. Thus, the preference for some rather uncertain outcomes and the propensity to smooth consumption over time are represented by two distinct parameters, and the effect of each of them are studied.

Suggested Citation

  • Emmanuelle Augeraud-Véron & Giorgio Fabbri & Katheline Schubert, 2019. "The Value of Biodiversity as an Insurance Device," Post-Print halshs-02301711, HAL.
  • Handle: RePEc:hal:journl:halshs-02301711
    DOI: 10.1093/ajae/aaz002
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Minh Ha-Duong & Nicolas Treich, 2004. "Risk Aversion, Intergenerational Equity and Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(2), pages 195-207, June.
    2. Smulders, Sjak & van Soest, Daan & Withagen, Cees, 2004. "International trade, species diversity, and habitat conservation," Journal of Environmental Economics and Management, Elsevier, vol. 48(2), pages 891-910, September.
    3. Keith C. Knapp & Lars J. Olson, 1996. "Dynamic Resource Management: Intertemporal Substitution and Risk Aversion," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1004-1014.
    4. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    5. Jeffrey A. Krautkraemer & G. C. van Kooten & Douglas L. Young, 1992. "Incorporating Risk Aversion into Dynamic Programming Models," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(4), pages 870-878.
    6. Martin L. Weitzman, 2000. "Economic Profitability Versus Ecological Entropy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(1), pages 237-263.
    7. Duffie, Darrel & Lions, Pierre-Louis, 1992. "PDE solutions of stochastic differential utility," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 577-606.
    8. Josef Haunschmied & Vladimir M. Veliov & Stefan Wrzaczek (ed.), 2014. "Dynamic Games in Economics," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-642-54248-0, March.
    9. Fischer, Joern & Abson, David J. & Butsic, Van & Chappell, M. Jahi & Ekroos, Johan & Hanspach, Jan & Kuemmerle, Tobias & Smith, Henrik G. & von Wehrden, Henrik, 2014. "Land sparing versus land sharing: Moving forward," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7(3), pages 149-157.
    10. Minh Ha-Duong & Nicolas Treich, 2004. "Risk Aversion, Intergenerational Equity and Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(2), pages 195-207, June.
    11. Richard E. Howitt & Siwa Msangi & Arnaud Reynaud & Keith C. Knapp, 2005. "Estimating Intertemporal Preferences for Natural Resource Allocation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 969-983.
    12. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    13. Quaas, Martin F. & Baumgartner, Stefan & Becker, Christian & Frank, Karin & Muller, Birgit, 2007. "Uncertainty and sustainability in the management of rangelands," Ecological Economics, Elsevier, vol. 62(2), pages 251-266, April.
    14. Lafuite, A.-S. & Loreau, M., 2017. "Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems," Ecological Modelling, Elsevier, vol. 351(C), pages 96-108.
    15. Robert E. Lucas Jr., 2003. "Macroeconomic Priorities," American Economic Review, American Economic Association, vol. 93(1), pages 1-14, March.
    16. Smith, William T., 1996. "Feasibility and transversality conditions for models of portfolio choice with non-expected utility in continuous time," Economics Letters, Elsevier, vol. 53(2), pages 123-131, November.
    17. Epstein, Larry G & Zin, Stanley E, 1991. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: An Empirical Analysis," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 263-286, April.
    18. Quaas, Martin F. & Baumgärtner, Stefan, 2008. "Natural vs. financial insurance in the management of public-good ecosystems," Ecological Economics, Elsevier, vol. 65(2), pages 397-406, April.
    19. Eppink, Florian V. & Withagen, Cees A., 2009. "Spatial patterns of biodiversity conservation in a multiregional general equilibrium model," Resource and Energy Economics, Elsevier, vol. 31(2), pages 75-88, May.
    20. Lybbert, Travis J. & McPeak, John, 2012. "Risk and intertemporal substitution: Livestock portfolios and off-take among Kenyan pastoralists," Journal of Development Economics, Elsevier, vol. 97(2), pages 415-426.
    21. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    22. Epaulard, Anne & Pommeret, Aude, 2003. "Optimally eating a stochastic cake: a recursive utility approach," Resource and Energy Economics, Elsevier, vol. 25(2), pages 129-139, May.
    23. Stefan Baumgärtner & Martin F. Quaas, 2010. "Managing increasing environmental risks through agrobiodiversity and agrienvironmental policies," Agricultural Economics, International Association of Agricultural Economists, vol. 41(5), pages 483-496, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    2. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Volatility-reducing biodiversity conservation under strategic interactions," Ecological Economics, Elsevier, vol. 190(C).
    3. Friedrich Scherzinger & Martin Schädler & Thomas Reitz & Rui Yin & Harald Auge & Ines Merbach & Christiane Roscher & W Stanley Harpole & Evgenia Blagodatskaya & Julia Siebert & Marcel Ciobanu & Fabian, 2024. "Sustainable land management enhances ecological and economic multifunctionality under ambient and future climate," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Thomas Douenne, 2020. "Disaster Risks, Disaster Strikes, and Economic Growth: the Role of Preferences," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 38, pages 251-272, October.
    5. Marielle Brunette & Marc Hanewinkel, 2021. "Assurance financière et assurance naturelle : une application à la forêt," Working Papers of BETA 2021-28, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    6. Thomas J. Sargent & John Stachurski, 2024. "Dynamic Programming: Finite States," Papers 2401.10473, arXiv.org.
    7. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    8. Unterberger, Christian & Olschewski, Roland, 2021. "Determining the insurance value of ecosystems: A discrete choice study on natural hazard protection by forests," Ecological Economics, Elsevier, vol. 180(C).
    9. Thomas Knoke & Carola Paul & Elizabeth Gosling & Isabelle Jarisch & Johannes Mohr & Rupert Seidl, 2023. "Assessing the Economic Resilience of Different Management Systems to Severe Forest Disturbance," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(2), pages 343-381, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Volatility-reducing biodiversity conservation under strategic interactions," Ecological Economics, Elsevier, vol. 190(C).
    2. Smith, William & Son, Young Seob, 2005. "Can the desire to conserve our natural resources be self-defeating?," Journal of Environmental Economics and Management, Elsevier, vol. 49(1), pages 52-67, January.
    3. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    4. Johnson Kakeu, 2023. "Concerns for Long-Run Risks and Natural Resource Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 1051-1093, April.
    5. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    6. Turnovsky, Stephen J. & Smith, William T., 2006. "Equilibrium consumption and precautionary savings in a stochastically growing economy," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 243-278, February.
    7. Kabderian Dreyer, Johannes & Sharma, Vivek & Smith, William, 2023. "Warm-glow investment and the underperformance of green stocks," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 546-570.
    8. Dibooglu, Sel & Kenc, Turalay, 2009. "Welfare cost of inflation in a stochastic balanced growth model," Economic Modelling, Elsevier, vol. 26(3), pages 650-658, May.
    9. Smith, William T., 1999. "Risk, the Spirit of Capitalism and Growth: The Implications of a Preference for Capital," Journal of Macroeconomics, Elsevier, vol. 21(2), pages 241-262, April.
    10. Richard E. Howitt & Siwa Msangi & Arnaud Reynaud & Keith C. Knapp, 2005. "Estimating Intertemporal Preferences for Natural Resource Allocation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 969-983.
    11. Fahrenwaldt, Matthias Albrecht & Jensen, Ninna Reitzel & Steffensen, Mogens, 2020. "Nonrecursive separation of risk and time preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 95-108.
    12. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    13. Joshua Lanier & Bin Miao & John K.-H. Quah & Songfa Zhong, 2024. "Intertemporal Consumption with Risk: A Revealed Preference Analysis," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1319-1333, September.
    14. Yu Chen & Thomas Cosimano & Alex Himonas & Peter Kelly, 2014. "An Analytic Approach for Stochastic Differential Utility for Endowment and Production Economies," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 397-443, December.
    15. Campbell, John Y. & Chacko, George & Rodriguez, Jorge & Viceira, Luis M., 2004. "Strategic asset allocation in a continuous-time VAR model," Journal of Economic Dynamics and Control, Elsevier, vol. 28(11), pages 2195-2214, October.
    16. Olijslagers, Stan & van der Ploeg, Frederick & van Wijnbergen, Sweder, 2023. "On current and future carbon prices in a risky world," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    17. Johan Burgaard & Mogens Steffensen, 2020. "Eliciting Risk Preferences and Elasticity of Substitution," Decision Analysis, INFORMS, vol. 17(4), pages 314-329, December.
    18. Knut K. Aase & Petter Bjerksund, 2021. "The Optimal Spending Rate versus the Expected Real Return of a Sovereign Wealth Fund," JRFM, MDPI, vol. 14(9), pages 1-36, September.
    19. Max Gillman & Michal Kejak & Michal Pakoš, 2015. "Learning about Rare Disasters: Implications For Consumption and Asset Prices," Review of Finance, European Finance Association, vol. 19(3), pages 1053-1104.
    20. Ruan, Xinfeng & Zhang, Jin E., 2018. "Equilibrium variance risk premium in a cost-free production economy," Journal of Economic Dynamics and Control, Elsevier, vol. 96(C), pages 42-60.

    More about this item

    Keywords

    biodiversity; recursive preferences; stochastic endogenous growth; insurance value;
    All these keywords.

    JEL classification:

    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O20 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - General
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-02301711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.