IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v313y2015icp212-222.html
   My bibliography  Save this article

A coupled movement and bioenergetics model to explore the spawning migration of anchovy in the Bay of Biscay

Author

Listed:
  • Politikos, Dimitrios V.
  • Huret, Martin
  • Petitgas, Pierre

Abstract

Adult anchovies in the Bay of Biscay perform north to south migration from late winter to early summer for spawning. However, what triggers and drives the geographic shift of the population remains unclear and poorly understood. An individual-based fish model has been implemented to explore the potential mechanisms that control anchovy's movement routes toward its spawning habitats. To achieve this goal, two fish movement behaviors – gradient detection through restricted area search and kinesis – simulated fish response to its dynamic environment. A bioenergetics model was used to represent individual growth and reproduction along the fish trajectory. The environmental forcing (food, temperature) of the model was provided by a coupled physical–biogeochemical model. We followed a hypothesis-testing strategy to actualize a series of simulations using different cues and computational assumptions. The gradient detection behavior was found as the most suitable mechanism to recreate the observed shift of anchovy distribution under the combined effect of sea-surface temperature and zooplankton. In addition, our results suggested that southward movement occurred more actively from early April to middle May following favorably the spatio-temporal evolution of zooplankton and temperature. In terms of fish bioenergetics, individuals who ended up in the southern part of the bay presented better condition based on energy content, proposing the resulting energy gain as an ecological explanation for this migration. The kinesis approach resulted in a moderate performance, producing distribution pattern with the highest spread. Finally, model performance was not significantly affected by changes on the starting date, initial fish distribution and number of particles used in the simulations, whereas it was drastically influenced by the adopted cues.

Suggested Citation

  • Politikos, Dimitrios V. & Huret, Martin & Petitgas, Pierre, 2015. "A coupled movement and bioenergetics model to explore the spawning migration of anchovy in the Bay of Biscay," Ecological Modelling, Elsevier, vol. 313(C), pages 212-222.
  • Handle: RePEc:eee:ecomod:v:313:y:2015:i:c:p:212-222
    DOI: 10.1016/j.ecolmodel.2015.06.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015002859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.06.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Yi & Chai, Fei & Rose, Kenneth A. & Ñiquen C., Miguel & Chavez, Francisco P., 2013. "Environmental influences on the interannual variation and spatial distribution of Peruvian anchovy (Engraulis ringens) population dynamics from 1991 to 2007: A three-dimensional modeling study," Ecological Modelling, Elsevier, vol. 264(C), pages 64-82.
    2. Watkins, Katherine Shepard & Rose, Kenneth A., 2013. "Evaluating the performance of individual-based animal movement models in novel environments," Ecological Modelling, Elsevier, vol. 250(C), pages 214-234.
    3. Okunishi, Takeshi & Yamanaka, Yasuhiro & Ito, Shin-ichi, 2009. "A simulation model for Japanese sardine (Sardinops melanostictus) migrations in the western North Pacific," Ecological Modelling, Elsevier, vol. 220(4), pages 462-479.
    4. Takeshi Okunishi & Shin-ichi Ito & Taketo Hashioka & Takashi Sakamoto & Naoki Yoshie & Hiroshi Sumata & Yumiko Yara & Naosuke Okada & Yasuhiro Yamanaka, 2012. "Impacts of climate change on growth, migration and recruitment success of Japanese sardine (Sardinops melanostictus) in the western North Pacific," Climatic Change, Springer, vol. 115(3), pages 485-503, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boyd, Robin & Roy, Shovonlal & Sibly, Richard & Thorpe, Robert & Hyder, Kieran, 2018. "A general approach to incorporating spatial and temporal variation in individual-based models of fish populations with application to Atlantic mackerel," Ecological Modelling, Elsevier, vol. 382(C), pages 9-17.
    2. Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
    3. Morrice, Katherine J. & Baptista, António M. & Burke, Brian J., 2020. "Environmental and behavioral controls on juvenile Chinook salmon migration pathways in the Columbia River estuary," Ecological Modelling, Elsevier, vol. 427(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Watkins, Katherine Shepard & Rose, Kenneth A., 2017. "Simulating individual-based movement in dynamic environments," Ecological Modelling, Elsevier, vol. 356(C), pages 59-72.
    2. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    3. Gabriel Natividad, 2016. "Quotas, Productivity, and Prices: The Case of Anchovy Fishing," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 25(1), pages 220-257, March.
    4. Fulford, Richard S. & Tolan, Jessica L. & Hagy, James D., 2024. "Simulating implications of fish behavioral response for managing hypoxia in estuaries with spatial dissolved oxygen variability," Ecological Modelling, Elsevier, vol. 490(C).
    5. Fulford, R.S. & Peterson, M.S. & Wu, W. & Grammer, P.O., 2014. "An ecological model of the habitat mosaic in estuarine nursery areas: Part II—Projecting effects of sea level rise on fish production," Ecological Modelling, Elsevier, vol. 273(C), pages 96-108.
    6. Takeshi Okunishi & Shin-ichi Ito & Taketo Hashioka & Takashi Sakamoto & Naoki Yoshie & Hiroshi Sumata & Yumiko Yara & Naosuke Okada & Yasuhiro Yamanaka, 2012. "Impacts of climate change on growth, migration and recruitment success of Japanese sardine (Sardinops melanostictus) in the western North Pacific," Climatic Change, Springer, vol. 115(3), pages 485-503, December.
    7. Watkins, Katherine Shepard & Rose, Kenneth A., 2013. "Evaluating the performance of individual-based animal movement models in novel environments," Ecological Modelling, Elsevier, vol. 250(C), pages 214-234.
    8. Kakehi, Shigeho & Abo, Jun-ichi & Miyamoto, Hiroomi & Fuji, Taiki & Watanabe, Kazuyoshi & Yamashita, Hideyuki & Suyama, Satoshi, 2020. "Forecasting Pacific saury (Cololabis saira) fishing grounds off Japan using a migration model driven by an ocean circulation model," Ecological Modelling, Elsevier, vol. 431(C).
    9. Xu, Yi & Chai, Fei & Rose, Kenneth A. & Ñiquen C., Miguel & Chavez, Francisco P., 2013. "Environmental influences on the interannual variation and spatial distribution of Peruvian anchovy (Engraulis ringens) population dynamics from 1991 to 2007: A three-dimensional modeling study," Ecological Modelling, Elsevier, vol. 264(C), pages 64-82.
    10. Morrice, Katherine J. & Baptista, António M. & Burke, Brian J., 2020. "Environmental and behavioral controls on juvenile Chinook salmon migration pathways in the Columbia River estuary," Ecological Modelling, Elsevier, vol. 427(C).
    11. Hamza, Faseela & M, Anju & Valsala, Vinu & R, Smitha B., 2021. "A bioenergetics model for seasonal growth of Indian oil sardine (Sardinella longiceps) in the Indian west coast," Ecological Modelling, Elsevier, vol. 456(C).
    12. Athanasios Gkanasos & Stylianos Somarakis & Kostas Tsiaras & Dimitrios Kleftogiannis & Marianna Giannoulaki & Eudoxia Schismenou & Sarantis Sofianos & George Triantafyllou, 2019. "Development, application and evaluation of a 1-D full life cycle anchovy and sardine model for the North Aegean Sea (Eastern Mediterranean)," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-24, August.
    13. Pata, Patrick R. & Yñiguez, Aletta T. & Deauna, Josephine Dianne L. & De Guzman, Asuncion B. & Jimenez, Cesaria R. & Rosario, Roselle T. Borja-Del & Villanoy, Cesar L., 2021. "Insights into the environmental conditions contributing to variability in the larval recruitment of the tropical sardine Sardinella lemuru," Ecological Modelling, Elsevier, vol. 451(C).
    14. Chloe Bracis & Eliezer Gurarie & Bram Van Moorter & R Andrew Goodwin, 2015. "Memory Effects on Movement Behavior in Animal Foraging," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    15. Pan, Gang & Chai, Fei & Tang, DanLing & Wang, Dongxiao, 2017. "Marine phytoplankton biomass responses to typhoon events in the South China Sea based on physical-biogeochemical model," Ecological Modelling, Elsevier, vol. 356(C), pages 38-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:313:y:2015:i:c:p:212-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.