IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v115y2012i3p485-503.html
   My bibliography  Save this article

Impacts of climate change on growth, migration and recruitment success of Japanese sardine (Sardinops melanostictus) in the western North Pacific

Author

Listed:
  • Takeshi Okunishi
  • Shin-ichi Ito
  • Taketo Hashioka
  • Takashi Sakamoto
  • Naoki Yoshie
  • Hiroshi Sumata
  • Yumiko Yara
  • Naosuke Okada
  • Yasuhiro Yamanaka

Abstract

We developed a multi-trophic level ecosystem model by coupling physical, biogeochemical-plankton and fish models. An oceanic general circulation model was coupled with a lower trophic level ecosystem model and a Japanese sardine migration model, and applied to the western North Pacific. To investigate the impact of global warming on the pelagic fish ecosystem, such as Japanese sardine, we conducted numerical experiments of growth and migration of Japanese sardine using physical fields for the present day and future with a global warming scenario simulated by a high-resolution climate model. The model results demonstrated possible impacts of global warming on the growth and migration pattern of Japanese sardine. The growths of fish in the current main spawning region under the global warming scenario were significantly slower than those under the present climate scenario. Fish in this region will be at disadvantage for their recruitment under the global warming condition. Prey conditions in the spawning region were projected not to markedly change under global warming condition while water temperature increased. As a result sardine spawning ground was projected to shift towards more north areas. During the feeding migration period in summer, geographical distribution of juveniles fish was projected to shift northwards by one to two degrees latitude under the global warming condition following the change in the distribution of optimal temperature region for feeding. However, this northwards shift of the optimal temperature for feeding was minimized adjacent to the western North Pacific by the cooler water supply by the intensification of the Oyashio. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Takeshi Okunishi & Shin-ichi Ito & Taketo Hashioka & Takashi Sakamoto & Naoki Yoshie & Hiroshi Sumata & Yumiko Yara & Naosuke Okada & Yasuhiro Yamanaka, 2012. "Impacts of climate change on growth, migration and recruitment success of Japanese sardine (Sardinops melanostictus) in the western North Pacific," Climatic Change, Springer, vol. 115(3), pages 485-503, December.
  • Handle: RePEc:spr:climat:v:115:y:2012:i:3:p:485-503
    DOI: 10.1007/s10584-012-0484-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0484-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0484-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Okunishi, Takeshi & Yamanaka, Yasuhiro & Ito, Shin-ichi, 2009. "A simulation model for Japanese sardine (Sardinops melanostictus) migrations in the western North Pacific," Ecological Modelling, Elsevier, vol. 220(4), pages 462-479.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Politikos, Dimitrios V. & Huret, Martin & Petitgas, Pierre, 2015. "A coupled movement and bioenergetics model to explore the spawning migration of anchovy in the Bay of Biscay," Ecological Modelling, Elsevier, vol. 313(C), pages 212-222.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Watkins, Katherine Shepard & Rose, Kenneth A., 2017. "Simulating individual-based movement in dynamic environments," Ecological Modelling, Elsevier, vol. 356(C), pages 59-72.
    2. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    3. Politikos, Dimitrios V. & Huret, Martin & Petitgas, Pierre, 2015. "A coupled movement and bioenergetics model to explore the spawning migration of anchovy in the Bay of Biscay," Ecological Modelling, Elsevier, vol. 313(C), pages 212-222.
    4. Watkins, Katherine Shepard & Rose, Kenneth A., 2013. "Evaluating the performance of individual-based animal movement models in novel environments," Ecological Modelling, Elsevier, vol. 250(C), pages 214-234.
    5. Kakehi, Shigeho & Abo, Jun-ichi & Miyamoto, Hiroomi & Fuji, Taiki & Watanabe, Kazuyoshi & Yamashita, Hideyuki & Suyama, Satoshi, 2020. "Forecasting Pacific saury (Cololabis saira) fishing grounds off Japan using a migration model driven by an ocean circulation model," Ecological Modelling, Elsevier, vol. 431(C).
    6. Hamza, Faseela & M, Anju & Valsala, Vinu & R, Smitha B., 2021. "A bioenergetics model for seasonal growth of Indian oil sardine (Sardinella longiceps) in the Indian west coast," Ecological Modelling, Elsevier, vol. 456(C).
    7. Athanasios Gkanasos & Stylianos Somarakis & Kostas Tsiaras & Dimitrios Kleftogiannis & Marianna Giannoulaki & Eudoxia Schismenou & Sarantis Sofianos & George Triantafyllou, 2019. "Development, application and evaluation of a 1-D full life cycle anchovy and sardine model for the North Aegean Sea (Eastern Mediterranean)," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-24, August.
    8. Pata, Patrick R. & YƱiguez, Aletta T. & Deauna, Josephine Dianne L. & De Guzman, Asuncion B. & Jimenez, Cesaria R. & Rosario, Roselle T. Borja-Del & Villanoy, Cesar L., 2021. "Insights into the environmental conditions contributing to variability in the larval recruitment of the tropical sardine Sardinella lemuru," Ecological Modelling, Elsevier, vol. 451(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:115:y:2012:i:3:p:485-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.