IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v273y2014icp96-108.html
   My bibliography  Save this article

An ecological model of the habitat mosaic in estuarine nursery areas: Part II—Projecting effects of sea level rise on fish production

Author

Listed:
  • Fulford, R.S.
  • Peterson, M.S.
  • Wu, W.
  • Grammer, P.O.

Abstract

Understanding the response of fish populations to habitat change mediated by sea level rise (SLR) is a key component of ecosystem-based management. Yet, no direct link has been established between habitat change due to SLR and fish population production. Here we take a coupled modeling approach to examine the SLR-habitat-fish relationship based on projections of habitat change resulting from a 0.26m increase in sea level by 2100 as input for a spatially-explicit individual-based model (SEIBM) of juvenile fish growth and mortality. This coupled modeling approach allows for an examination of both mechanistic and behavioral responses to habitat change, as well as the projected impact of these responses on population production. Habitat changes described with the Sea Level Affecting Marshes Model (SLAMM 6.0.1) in response to SLR included a conversion of marsh and higher elevation habitat types into other structural types and open water, and an increase in overall fragmentation. These habitat changes were combined with measures of temporal change in dynamic habitat variables to form a habitat mosaic. The impact of changes in this mosaic on juvenile fish growth and mortality was largely dependent on movement strategy employed in the SEIBM followed by changes in dynamic habitat, and then changes in structural habitat projected by the SLAMM model. Movement strategy and SLR effects interacted strongly, which suggests that how fish respond to habitat change is a critical factor to understanding population-level effects. Overall, projected SLR effects on fish distribution most consistent with field data were initially negative for net fish production, but became net positive by the terminal year of SLR as the positive effects of fragmentation became most important. These results are consistent with empirical studies of coastal marsh production in the Gulf of Mexico and demonstrate the importance of incorporating a holistic measure of habitat quality and fish behavioral responses into any projection of SLR effects on estuarine fish production.

Suggested Citation

  • Fulford, R.S. & Peterson, M.S. & Wu, W. & Grammer, P.O., 2014. "An ecological model of the habitat mosaic in estuarine nursery areas: Part II—Projecting effects of sea level rise on fish production," Ecological Modelling, Elsevier, vol. 273(C), pages 96-108.
  • Handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:96-108
    DOI: 10.1016/j.ecolmodel.2013.10.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013005310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.10.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fulford, R.S. & Peterson, M.S. & Grammer, P.O., 2011. "An ecological model of the habitat mosaic in estuarine nursery areas: Part I—Interaction of dispersal theory and habitat variability in describing juvenile fish distributions," Ecological Modelling, Elsevier, vol. 222(17), pages 3203-3215.
    2. Joseph Donoghue, 2011. "Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future," Climatic Change, Springer, vol. 107(1), pages 17-33, July.
    3. Ward, David, 2010. "A parsimonious optimal foraging model explaining mortality patterns in Serengeti wildebeest," Ecological Modelling, Elsevier, vol. 221(19), pages 2406-2408.
    4. Laura Geselbracht & Kathleen Freeman & Eugene Kelly & Doria Gordon & Francis Putz, 2011. "Retrospective and prospective model simulations of sea level rise impacts on Gulf of Mexico coastal marshes and forests in Waccasassa Bay, Florida," Climatic Change, Springer, vol. 107(1), pages 35-57, July.
    5. Cucco, Andrea & Sinerchia, Matteo & Lefrançois, Christel & Magni, Paolo & Ghezzo, Michol & Umgiesser, Georg & Perilli, Angelo & Domenici, Paolo, 2012. "A metabolic scope based model of fish response to environmental changes," Ecological Modelling, Elsevier, vol. 237, pages 132-141.
    6. Watkins, Katherine Shepard & Rose, Kenneth A., 2013. "Evaluating the performance of individual-based animal movement models in novel environments," Ecological Modelling, Elsevier, vol. 250(C), pages 214-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fulford, Richard S. & Tolan, Jessica L. & Hagy, James D., 2024. "Simulating implications of fish behavioral response for managing hypoxia in estuaries with spatial dissolved oxygen variability," Ecological Modelling, Elsevier, vol. 490(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fulford, Richard S. & Tolan, Jessica L. & Hagy, James D., 2024. "Simulating implications of fish behavioral response for managing hypoxia in estuaries with spatial dissolved oxygen variability," Ecological Modelling, Elsevier, vol. 490(C).
    2. Reed Noss, 2011. "Between the devil and the deep blue sea: Florida’s unenviable position with respect to sea level rise," Climatic Change, Springer, vol. 107(1), pages 1-16, July.
    3. Watkins, Katherine Shepard & Rose, Kenneth A., 2017. "Simulating individual-based movement in dynamic environments," Ecological Modelling, Elsevier, vol. 356(C), pages 59-72.
    4. Joyce Maschinski & Michael Ross & Hong Liu & Joe O’Brien & Eric Wettberg & Kristin Haskins, 2011. "Sinking ships: conservation options for endemic taxa threatened by sea level rise," Climatic Change, Springer, vol. 107(1), pages 147-167, July.
    5. Wu, Wei & Yeager, Kevin M. & Peterson, Mark S. & Fulford, Richard S., 2015. "Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)," Ecological Modelling, Elsevier, vol. 303(C), pages 55-69.
    6. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    7. Fulford, Richard & Yoskowitz, David & Russell, Marc & Dantin, Darrin & Rogers, John, 2016. "Habitat and recreational fishing opportunity in Tampa Bay: Linking ecological and ecosystem services to human beneficiaries," Ecosystem Services, Elsevier, vol. 17(C), pages 64-74.
    8. Politikos, Dimitrios V. & Huret, Martin & Petitgas, Pierre, 2015. "A coupled movement and bioenergetics model to explore the spawning migration of anchovy in the Bay of Biscay," Ecological Modelling, Elsevier, vol. 313(C), pages 212-222.
    9. Wenwu Tang & Heidi S. Hearne & Zachery Slocum & Tianyang Chen, 2023. "GIS-Based Scientific Workflows for Automated Spatially Driven Sea Level Rise Modeling," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
    10. Fulford, R.S. & Peterson, M.S. & Grammer, P.O., 2011. "An ecological model of the habitat mosaic in estuarine nursery areas: Part I—Interaction of dispersal theory and habitat variability in describing juvenile fish distributions," Ecological Modelling, Elsevier, vol. 222(17), pages 3203-3215.
    11. Davina Passeri & Scott Hagen & Matthew Bilskie & Stephen Medeiros, 2015. "On the significance of incorporating shoreline changes for evaluating coastal hydrodynamics under sea level rise scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1599-1617, January.
    12. Randall Parkinson & Peter Harlem & John Meeder, 2015. "Managing the Anthropocene marine transgression to the year 2100 and beyond in the State of Florida U.S.A," Climatic Change, Springer, vol. 128(1), pages 85-98, January.
    13. Linhoss, Anna C. & Kiker, Gregory A. & Aiello-Lammens, Matthew E. & Chu-Agor, Ma. Librada & Convertino, Matteo & Muñoz-Carpena, Rafael & Fischer, Richard & Linkov, Igor, 2013. "Decision analysis for species preservation under sea-level rise," Ecological Modelling, Elsevier, vol. 263(C), pages 264-272.
    14. Xu, Yi & Chai, Fei & Rose, Kenneth A. & Ñiquen C., Miguel & Chavez, Francisco P., 2013. "Environmental influences on the interannual variation and spatial distribution of Peruvian anchovy (Engraulis ringens) population dynamics from 1991 to 2007: A three-dimensional modeling study," Ecological Modelling, Elsevier, vol. 264(C), pages 64-82.
    15. Morrice, Katherine J. & Baptista, António M. & Burke, Brian J., 2020. "Environmental and behavioral controls on juvenile Chinook salmon migration pathways in the Columbia River estuary," Ecological Modelling, Elsevier, vol. 427(C).
    16. Chloe Bracis & Eliezer Gurarie & Bram Van Moorter & R Andrew Goodwin, 2015. "Memory Effects on Movement Behavior in Animal Foraging," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:96-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.