IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v240y2012icp113-122.html
   My bibliography  Save this article

A review of supervised machine learning algorithms and their applications to ecological data

Author

Listed:
  • Crisci, C.
  • Ghattas, B.
  • Perera, G.

Abstract

In this paper we present a general overview of several supervised machine learning (ML) algorithms and illustrate their use for the prediction of mass mortality events in the coastal rocky benthic communities of the NW Mediterranean Sea. In the first part of the paper we present, in a conceptual way, the general framework of ML and explain the basis of the underlying theory. In the second part we describe some outstanding ML techniques to treat ecological data. In the third part we present our ecological problem and we illustrate exposed ML techniques with our data. Finally, we briefly summarize some extensions of several methods for multi-class output prediction.

Suggested Citation

  • Crisci, C. & Ghattas, B. & Perera, G., 2012. "A review of supervised machine learning algorithms and their applications to ecological data," Ecological Modelling, Elsevier, vol. 240(C), pages 113-122.
  • Handle: RePEc:eee:ecomod:v:240:y:2012:i:c:p:113-122
    DOI: 10.1016/j.ecolmodel.2012.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012001081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kocev, Dragi & Naumoski, Andreja & Mitreski, Kosta & Krstić, Svetislav & Džeroski, Sašo, 2010. "Learning habitat models for the diatom community in Lake Prespa," Ecological Modelling, Elsevier, vol. 221(2), pages 330-337.
    2. Merckx, Bea & Goethals, Peter & Steyaert, Maaike & Vanreusel, Ann & Vincx, Magda & Vanaverbeke, Jan, 2009. "Predictability of marine nematode biodiversity," Ecological Modelling, Elsevier, vol. 220(11), pages 1449-1458.
    3. Knudby, Anders & Brenning, Alexander & LeDrew, Ellsworth, 2010. "New approaches to modelling fish–habitat relationships," Ecological Modelling, Elsevier, vol. 221(3), pages 503-511.
    4. Pontin, D.R. & Schliebs, S. & Worner, S.P. & Watts, M.J., 2011. "Determining factors that influence the dispersal of a pelagic species: A comparison between artificial neural networks and evolutionary algorithms," Ecological Modelling, Elsevier, vol. 222(10), pages 1657-1665.
    5. Ribeiro, Rita & Torgo, Luís, 2008. "A comparative study on predicting algae blooms in Douro River, Portugal," Ecological Modelling, Elsevier, vol. 212(1), pages 86-91.
    6. Carolina Crisci & Nathaniel Bensoussan & Jean-Claude Romano & Joaquim Garrabou, 2011. "Temperature Anomalies and Mortality Events in Marine Communities: Insights on Factors behind Differential Mortality Impacts in the NW Mediterranean," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-13, September.
    7. Fernandes, Jose A. & Irigoien, Xabier & Goikoetxea, Nerea & Lozano, Jose A. & Inza, Iñaki & Pérez, Aritz & Bode, Antonio, 2010. "Fish recruitment prediction, using robust supervised classification methods," Ecological Modelling, Elsevier, vol. 221(2), pages 338-352.
    8. Volf, Goran & Atanasova, Nataša & Kompare, Boris & Precali, Robert & Ožanić, Nevenka, 2011. "Descriptive and prediction models of phytoplankton in the northern Adriatic," Ecological Modelling, Elsevier, vol. 222(14), pages 2502-2511.
    9. Nerini, David & Ghattas, Badih, 2007. "Classifying densities using functional regression trees: Applications in oceanology," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4984-4993, June.
    10. Kocev, Dragi & Džeroski, Sašo & White, Matt D. & Newell, Graeme R. & Griffioen, Peter, 2009. "Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition," Ecological Modelling, Elsevier, vol. 220(8), pages 1159-1168.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crisci, Carolina & Terra, Rafael & Pacheco, Juan Pablo & Ghattas, Badih & Bidegain, Mario & Goyenola, Guillermo & Lagomarsino, Juan José & Méndez, Gustavo & Mazzeo, Néstor, 2017. "Multi-model approach to predict phytoplankton biomass and composition dynamics in a eutrophic shallow lake governed by extreme meteorological events," Ecological Modelling, Elsevier, vol. 360(C), pages 80-93.
    2. Simidjievski, Nikola & Todorovski, Ljupčo & Džeroski, Sašo, 2015. "Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems," Ecological Modelling, Elsevier, vol. 306(C), pages 305-317.
    3. Zonlehoua Coulibali & Athyna Nancy Cambouris & Serge-Étienne Parent, 2020. "Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-32, August.
    4. Alison Pereira Ribeiro & Nádia Felix Felipe da Silva & Fernanda Neiva Mesquita & Priscila de Cássia Souza Araújo & Thierson Couto Rosa & José Neiva Mesquita-Neto, 2021. "Machine learning approach for automatic recognition of tomato-pollinating bees based on their buzzing-sounds," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-21, September.
    5. Shen, Jian & Qin, Qubin & Wang, Ya & Sisson, Mac, 2019. "A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading," Ecological Modelling, Elsevier, vol. 398(C), pages 44-54.
    6. Beáta Novotná & Ľuboš Jurík & Ján Čimo & Jozef Palkovič & Branislav Chvíla & Vladimír Kišš, 2022. "Machine Learning for Pan Evaporation Modeling in Different Agroclimatic Zones of the Slovak Republic (Macro-Regions)," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    7. Yeeun Shin & Suyeon Kim & Se-Rin Park & Taewoo Yi & Chulgoo Kim & Sang-Woo Lee & Kyungjin An, 2022. "Identifying Key Environmental Factors for Paulownia coreana Habitats: Implementing National On-Site Survey and Machine Learning Algorithms," Land, MDPI, vol. 11(4), pages 1-16, April.
    8. Olatunji, Obafemi O. & Akinlabi, Stephen & Madushele, Nkosinathi & Adedeji, Paul A., 2020. "Property-based biomass feedstock grading using k-Nearest Neighbour technique," Energy, Elsevier, vol. 190(C).
    9. Muñoz-Mas, R. & Martínez-Capel, F. & Alcaraz-Hernández, J.D. & Mouton, A.M., 2015. "Can multilayer perceptron ensembles model the ecological niche of freshwater fish species?," Ecological Modelling, Elsevier, vol. 309, pages 72-81.
    10. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadukothanahally Nagaraju Shivaprakash & Niraj Swami & Sagar Mysorekar & Roshni Arora & Aditya Gangadharan & Karishma Vohra & Madegowda Jadeyegowda & Joseph M. Kiesecker, 2022. "Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    2. Shen, Jian & Qin, Qubin & Wang, Ya & Sisson, Mac, 2019. "A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading," Ecological Modelling, Elsevier, vol. 398(C), pages 44-54.
    3. Choi, Jong-Kuk & Oh, Hyun-Joo & Koo, Bon Joo & Ryu, Joo-Hyung & Lee, Saro, 2011. "Crustacean habitat potential mapping in a tidal flat using remote sensing and GIS," Ecological Modelling, Elsevier, vol. 222(8), pages 1522-1533.
    4. Everaert, Gert & Boets, Pieter & Lock, Koen & Džeroski, Sašo & Goethals, Peter L.M., 2011. "Using classification trees to analyze the impact of exotic species on the ecological assessment of polder lakes in Flanders, Belgium," Ecological Modelling, Elsevier, vol. 222(14), pages 2202-2212.
    5. Casado, David, 2009. "Classification of functional data: a weighted distance approach," DES - Working Papers. Statistics and Econometrics. WS ws093915, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Nikola Simidjievski & Ljupčo Todorovski & Sašo Džeroski, 2016. "Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-27, April.
    7. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    8. Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
    9. Moung-Jin Lee & Wonkyong Song & Saro Lee, 2015. "Habitat Mapping of the Leopard Cat ( Prionailurus bengalensis ) in South Korea Using GIS," Sustainability, MDPI, vol. 7(4), pages 1-21, April.
    10. Holguin-Gonzalez, Javier E. & Boets, Pieter & Alvarado, Andres & Cisneros, Felipe & Carrasco, María C. & Wyseure, Guido & Nopens, Ingmar & Goethals, Peter L.M., 2013. "Integrating hydraulic, physicochemical and ecological models to assess the effectiveness of water quality management strategies for the River Cuenca in Ecuador," Ecological Modelling, Elsevier, vol. 254(C), pages 1-14.
    11. Shuai Li & Haiyu Ma & Di Yang & Wei Hu & Hao Li, 2023. "The Main Drivers of Wetland Evolution in the Beijing-Tianjin-Hebei Plain," Land, MDPI, vol. 12(2), pages 1-25, February.
    12. Delicado, P., 2011. "Dimensionality reduction when data are density functions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 401-420, January.
    13. Hron, K. & Menafoglio, A. & Templ, M. & Hrůzová, K. & Filzmoser, P., 2016. "Simplicial principal component analysis for density functions in Bayes spaces," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 330-350.
    14. Germán Aneiros-Pérez & Philippe Vieu, 2013. "Testing linearity in semi-parametric functional data analysis," Computational Statistics, Springer, vol. 28(2), pages 413-434, April.
    15. Zhang, Zhen & Müller, Hans-Georg, 2011. "Functional density synchronization," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2234-2249, July.
    16. Bongiorno, Enea G. & Goia, Aldo, 2019. "Describing the concentration of income populations by functional principal component analysis on Lorenz curves," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 10-24.
    17. Antonio D’Ambrosio & Willem J. Heiser, 2016. "A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 774-794, September.
    18. Wen Song & Wei Song & Haihong Gu & Fuping Li, 2020. "Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas," IJERPH, MDPI, vol. 17(6), pages 1-17, March.
    19. Park, Juhyun & Gasser, Theo & Rousson, Valentin, 2009. "Structural components in functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3452-3465, July.
    20. van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:240:y:2012:i:c:p:113-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.