IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v360y2017icp80-93.html
   My bibliography  Save this article

Multi-model approach to predict phytoplankton biomass and composition dynamics in a eutrophic shallow lake governed by extreme meteorological events

Author

Listed:
  • Crisci, Carolina
  • Terra, Rafael
  • Pacheco, Juan Pablo
  • Ghattas, Badih
  • Bidegain, Mario
  • Goyenola, Guillermo
  • Lagomarsino, Juan José
  • Méndez, Gustavo
  • Mazzeo, Néstor

Abstract

A multi-model approach to predict phytoplankton biomass and composition was performed in a eutrophic Uruguayan shallow lake which is the second drinking water source of the country. We combined statistical (spectral analysis and Machine learning techniques) and physically based models to generate, for the first time in this system, a predictive tool of phytoplankton biomass (chlorophyll-a) and composition (morphology-based functional groups). The results, based on a 11-year time series, revealed two alternating phases in the temporal dynamics of phytoplankton biomass. One phase is characterized by high inorganic turbidity and low phytoplankton biomass, and the other by low inorganic turbidity and variable (low and high) phytoplankton biomass. A threshold of turbidity (29 TNU), above which phytoplankton remains with low biomass (<15–20ug/l) was established. The periods of high turbidity, which in total cover 30% of the time series, start abruptly and are related to external forcing. Meteorological conditions associated with the beginning of these periods were modeled through a regression tree analysis. These conditions consist of moderate to high wind intensities from the SW direction, in some cases combined with high antecedent precipitation or low water level. The results from the physically-based modeling indicated that the long decaying time-scale of turbidity and intermediate resuspension events could explain the prolonged length of the high turbidity periods (∼1.5 years). Random Forests models for the prediction of phytoplankton biomass and composition in periods of low turbidity resulted in a proportion of explained variance and a classification error over a test sample of 0.46 and 0.34 respectively. Turbidity, conductivity, temperature and water level were within the most important model predictors. The development and improvement of this type of modeling is needed to provide management tools to water managers in the current water supply situation.

Suggested Citation

  • Crisci, Carolina & Terra, Rafael & Pacheco, Juan Pablo & Ghattas, Badih & Bidegain, Mario & Goyenola, Guillermo & Lagomarsino, Juan José & Méndez, Gustavo & Mazzeo, Néstor, 2017. "Multi-model approach to predict phytoplankton biomass and composition dynamics in a eutrophic shallow lake governed by extreme meteorological events," Ecological Modelling, Elsevier, vol. 360(C), pages 80-93.
  • Handle: RePEc:eee:ecomod:v:360:y:2017:i:c:p:80-93
    DOI: 10.1016/j.ecolmodel.2017.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016304422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crisci, C. & Ghattas, B. & Perera, G., 2012. "A review of supervised machine learning algorithms and their applications to ecological data," Ecological Modelling, Elsevier, vol. 240(C), pages 113-122.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beáta Novotná & Ľuboš Jurík & Ján Čimo & Jozef Palkovič & Branislav Chvíla & Vladimír Kišš, 2022. "Machine Learning for Pan Evaporation Modeling in Different Agroclimatic Zones of the Slovak Republic (Macro-Regions)," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    2. Simidjievski, Nikola & Todorovski, Ljupčo & Džeroski, Sašo, 2015. "Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems," Ecological Modelling, Elsevier, vol. 306(C), pages 305-317.
    3. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.
    4. Shen, Jian & Qin, Qubin & Wang, Ya & Sisson, Mac, 2019. "A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading," Ecological Modelling, Elsevier, vol. 398(C), pages 44-54.
    5. Muñoz-Mas, R. & Martínez-Capel, F. & Alcaraz-Hernández, J.D. & Mouton, A.M., 2015. "Can multilayer perceptron ensembles model the ecological niche of freshwater fish species?," Ecological Modelling, Elsevier, vol. 309, pages 72-81.
    6. Alison Pereira Ribeiro & Nádia Felix Felipe da Silva & Fernanda Neiva Mesquita & Priscila de Cássia Souza Araújo & Thierson Couto Rosa & José Neiva Mesquita-Neto, 2021. "Machine learning approach for automatic recognition of tomato-pollinating bees based on their buzzing-sounds," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-21, September.
    7. Olatunji, Obafemi O. & Akinlabi, Stephen & Madushele, Nkosinathi & Adedeji, Paul A., 2020. "Property-based biomass feedstock grading using k-Nearest Neighbour technique," Energy, Elsevier, vol. 190(C).
    8. Yeeun Shin & Suyeon Kim & Se-Rin Park & Taewoo Yi & Chulgoo Kim & Sang-Woo Lee & Kyungjin An, 2022. "Identifying Key Environmental Factors for Paulownia coreana Habitats: Implementing National On-Site Survey and Machine Learning Algorithms," Land, MDPI, vol. 11(4), pages 1-16, April.
    9. Zonlehoua Coulibali & Athyna Nancy Cambouris & Serge-Étienne Parent, 2020. "Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-32, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:360:y:2017:i:c:p:80-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.