IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v306y2015icp305-317.html
   My bibliography  Save this article

Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems

Author

Listed:
  • Simidjievski, Nikola
  • Todorovski, Ljupčo
  • Džeroski, Sašo

Abstract

Ensemble methods are machine learning methods that construct a set of models and combine their outputs into a single prediction. The models within an ensemble can have different structure and parameters and make diverse predictions. Ensembles achieve high predictive performance, benefiting from the diversity of the individual models and outperforming them.

Suggested Citation

  • Simidjievski, Nikola & Todorovski, Ljupčo & Džeroski, Sašo, 2015. "Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems," Ecological Modelling, Elsevier, vol. 306(C), pages 305-317.
  • Handle: RePEc:eee:ecomod:v:306:y:2015:i:c:p:305-317
    DOI: 10.1016/j.ecolmodel.2014.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014003986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crisci, C. & Ghattas, B. & Perera, G., 2012. "A review of supervised machine learning algorithms and their applications to ecological data," Ecological Modelling, Elsevier, vol. 240(C), pages 113-122.
    2. Čerepnalkoski, Darko & Taškova, Katerina & Todorovski, Ljupčo & Atanasova, Nataša & Džeroski, Sašo, 2012. "The influence of parameter fitting methods on model structure selection in automated modeling of aquatic ecosystems," Ecological Modelling, Elsevier, vol. 245(C), pages 136-165.
    3. Tashkova, Katerina & Šilc, Jurij & Atanasova, Nataša & Džeroski, Sašo, 2012. "Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with meta-heuristic optimization," Ecological Modelling, Elsevier, vol. 226(C), pages 36-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikola Simidjievski & Ljupčo Todorovski & Sašo Džeroski, 2016. "Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikola Simidjievski & Ljupčo Todorovski & Sašo Džeroski, 2016. "Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-27, April.
    2. Beáta Novotná & Ľuboš Jurík & Ján Čimo & Jozef Palkovič & Branislav Chvíla & Vladimír Kišš, 2022. "Machine Learning for Pan Evaporation Modeling in Different Agroclimatic Zones of the Slovak Republic (Macro-Regions)," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    3. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.
    4. Larocque, Guy R. & Bhatti, Jagtar & Arsenault, André, 2014. "Integrated modelling software platform development for effective use of ecosystem models," Ecological Modelling, Elsevier, vol. 288(C), pages 195-202.
    5. Shen, Jian & Qin, Qubin & Wang, Ya & Sisson, Mac, 2019. "A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading," Ecological Modelling, Elsevier, vol. 398(C), pages 44-54.
    6. Muñoz-Mas, R. & Martínez-Capel, F. & Alcaraz-Hernández, J.D. & Mouton, A.M., 2015. "Can multilayer perceptron ensembles model the ecological niche of freshwater fish species?," Ecological Modelling, Elsevier, vol. 309, pages 72-81.
    7. Alison Pereira Ribeiro & Nádia Felix Felipe da Silva & Fernanda Neiva Mesquita & Priscila de Cássia Souza Araújo & Thierson Couto Rosa & José Neiva Mesquita-Neto, 2021. "Machine learning approach for automatic recognition of tomato-pollinating bees based on their buzzing-sounds," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-21, September.
    8. Olatunji, Obafemi O. & Akinlabi, Stephen & Madushele, Nkosinathi & Adedeji, Paul A., 2020. "Property-based biomass feedstock grading using k-Nearest Neighbour technique," Energy, Elsevier, vol. 190(C).
    9. Yeeun Shin & Suyeon Kim & Se-Rin Park & Taewoo Yi & Chulgoo Kim & Sang-Woo Lee & Kyungjin An, 2022. "Identifying Key Environmental Factors for Paulownia coreana Habitats: Implementing National On-Site Survey and Machine Learning Algorithms," Land, MDPI, vol. 11(4), pages 1-16, April.
    10. Timothy Haas, 2020. "Developing political-ecological theory: The need for many-task computing," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-26, November.
    11. Crisci, Carolina & Terra, Rafael & Pacheco, Juan Pablo & Ghattas, Badih & Bidegain, Mario & Goyenola, Guillermo & Lagomarsino, Juan José & Méndez, Gustavo & Mazzeo, Néstor, 2017. "Multi-model approach to predict phytoplankton biomass and composition dynamics in a eutrophic shallow lake governed by extreme meteorological events," Ecological Modelling, Elsevier, vol. 360(C), pages 80-93.
    12. Čerepnalkoski, Darko & Taškova, Katerina & Todorovski, Ljupčo & Atanasova, Nataša & Džeroski, Sašo, 2012. "The influence of parameter fitting methods on model structure selection in automated modeling of aquatic ecosystems," Ecological Modelling, Elsevier, vol. 245(C), pages 136-165.
    13. Zonlehoua Coulibali & Athyna Nancy Cambouris & Serge-Étienne Parent, 2020. "Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-32, August.
    14. Larocque, Guy R. & Bhatti, Jagtar & Arsenault, André, 2015. "Integrated modelling software platform development for effective use of ecosystem models," Ecological Modelling, Elsevier, vol. 306(C), pages 318-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:306:y:2015:i:c:p:305-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.