IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v235-236y2012ip49-58.html
   My bibliography  Save this article

State-space methods for more completely capturing behavioral dynamics from animal tracks

Author

Listed:
  • Breed, Greg A.
  • Costa, Daniel P.
  • Jonsen, Ian D.
  • Robinson, Patrick W.
  • Mills-Flemming, Joanna

Abstract

State-space models (SSMs) are now the tools of choice for analyzing animal tracking data. A wide variety of such data are being collected worldwide and modeled using state-space methods to better understand population dynamics, animal behavior and physical and environmental processes. The central goal of such analyses is the estimation of biologically interpretable static parameters. Most approaches implement some form of MCMC or Kalman filter to estimate these parameters. We demonstrate the utility in allowing time-varying (rather than static) parameters to more completely capture dynamic features of the processes of interest, in this case the behavioral dynamics of tracked marine animals. We develop and demonstrate a parameter augmented sequential Monte Carlo method (also referred to as an augmented particle filter or particle smoother (PF or PS)) that allows straightforward estimation of both static and time-varying parameters from tracking data. We focus specifically on temporally irregular GPS data describing marine animal movement with the goal of better understanding the underlying behavioral dynamics. Using tracking data from California sea lions (Zalophus californianus) we demonstrate the approach's ability to detect subtle yet biologically relevant changes in behavior.

Suggested Citation

  • Breed, Greg A. & Costa, Daniel P. & Jonsen, Ian D. & Robinson, Patrick W. & Mills-Flemming, Joanna, 2012. "State-space methods for more completely capturing behavioral dynamics from animal tracks," Ecological Modelling, Elsevier, vol. 235, pages 49-58.
  • Handle: RePEc:eee:ecomod:v:235-236:y:2012:i::p:49-58
    DOI: 10.1016/j.ecolmodel.2012.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012001378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    2. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph D. Bailey & Edward A. Codling, 2021. "Emergence of the wrapped Cauchy distribution in mixed directional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 229-246, June.
    2. Mónica A Silva & Ian Jonsen & Deborah J F Russell & Rui Prieto & Dave Thompson & Mark F Baumgartner, 2014. "Assessing Performance of Bayesian State-Space Models Fit to Argos Satellite Telemetry Locations Processed with Kalman Filtering," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    3. Ethan Lawler & Kim Whoriskey & William H. Aeberhard & Chris Field & Joanna Mills Flemming, 2019. "The Conditionally Autoregressive Hidden Markov Model (CarHMM): Inferring Behavioural States from Animal Tracking Data Exhibiting Conditional Autocorrelation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 651-668, December.
    4. Woillez, Mathieu & Fablet, Ronan & Ngo, Tran-Thanh & Lalire, Maxime & Lazure, Pascal & de Pontual, Hélène, 2016. "A HMM-based model to geolocate pelagic fish from high-resolution individual temperature and depth histories: European sea bass as a case study," Ecological Modelling, Elsevier, vol. 321(C), pages 10-22.
    5. A. Parton & P. G. Blackwell, 2017. "Bayesian Inference for Multistate ‘Step and Turn’ Animal Movement in Continuous Time," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 373-392, September.
    6. Lamonica, Dominique & Drouineau, Hilaire & Capra, Hervé & Pella, Hervé & Maire, Anthony, 2020. "A framework for pre-processing individual location telemetry data for freshwater fish in a river section," Ecological Modelling, Elsevier, vol. 431(C).
    7. Axel Finke & Ruth King & Alexandros Beskos & Petros Dellaportas, 2019. "Efficient Sequential Monte Carlo Algorithms for Integrated Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 204-224, June.
    8. Michael Garstang & Robert E Davis & Keith Leggett & Oliver W Frauenfeld & Steven Greco & Edward Zipser & Michael Peterson, 2014. "Response of African Elephants (Loxodonta africana) to Seasonal Changes in Rainfall," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-13, October.
    9. Zhang, Jingjing & Dennis, Todd E. & Landers, Todd J. & Bell, Elizabeth & Perry, George L.W., 2017. "Linking individual-based and statistical inferential models in movement ecology: A case study with black petrels (Procellaria parkinsoni)," Ecological Modelling, Elsevier, vol. 360(C), pages 425-436.
    10. Boschetti, Fabio & Vanderklift, Mathew A., 2015. "How the movement characteristics of large marine predators influence estimates of their abundance," Ecological Modelling, Elsevier, vol. 313(C), pages 223-236.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    2. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    3. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Working Papers 720, Queen Mary University of London, School of Economics and Finance.
    4. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    5. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    6. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    7. Berger, Tino & Pozzi, Lorenzo, 2013. "Measuring time-varying financial market integration: An unobserved components approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 463-473.
    8. Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
    9. Ai Deng & Pierre Perron, 2006. "A comparison of alternative asymptotic frameworks to analyse a structural change in a linear time trend," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 423-447, November.
    10. Francis Vitek, 2005. "An Unobserved Components Model of the Monetary Transmission Mechanism in a Small Open Economy," Macroeconomics 0512019, University Library of Munich, Germany, revised 06 Feb 2006.
    11. Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
    12. Malin Gardberg & Lorenzo Pozzi, 2022. "Aggregate consumption and wealth in the long run: The impact of financial liberalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 161-186, January.
    13. Justin Yifu Lin & Célestin Monga & Samuel Standaert, 2019. "The Inclusive Sustainable Transformation Index," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(1), pages 47-80, May.
    14. repec:spo:wpmain:info:hdl:2441/2129 is not listed on IDEAS
    15. Nima Nonejad, 2013. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," CREATES Research Papers 2013-27, Department of Economics and Business Economics, Aarhus University.
    16. Jana Riedel, 2020. "On real interest rate convergence among G7 countries," Empirical Economics, Springer, vol. 59(2), pages 599-626, August.
    17. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    18. Berger, Tino & Richter, Julia, 2017. "What has caused global business cycle decoupling: Smaller shocks or reduced sensitivity?," University of Göttingen Working Papers in Economics 300, University of Goettingen, Department of Economics.
    19. Rokas Gylys & Jonas Šiaulys, 2020. "Estimation of Uncertainty in Mortality Projections Using State-Space Lee-Carter Model," Mathematics, MDPI, vol. 8(7), pages 1-23, June.
    20. Matthieu Lemoine & Florian Pelgrin, 2003. "Introduction aux modèles espace-état et au filtre de Kalman," Revue de l'OFCE, Presses de Sciences-Po, vol. 86(3), pages 203-229.
    21. T. Berger & L. Pozzi, 2011. "A new model-based approach to measuring time-varying financial market integration," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/714, Ghent University, Faculty of Economics and Business Administration.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:235-236:y:2012:i::p:49-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.