IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v105y2021i2d10.1007_s10182-020-00380-7.html
   My bibliography  Save this article

Emergence of the wrapped Cauchy distribution in mixed directional data

Author

Listed:
  • Joseph D. Bailey

    (University of Essex)

  • Edward A. Codling

    (University of Essex)

Abstract

Inferring the most appropriate distribution (or distributions) to describe observed directional data is important in many applications of circular statistics. In particular, animal movement paths are typically analysed and modelled by considering the distribution of step lengths and turning (or absolute) angles. Here we demonstrate that a single-wrapped Cauchy distribution can appear to fit directional data mixed from two different underlying wrapped normal distributions. We derive mathematical expressions to calculate the parameter space for which this occurs and illustrate the result by analysing an example data set of the movements of African bull elephants (Loxodonta Africana). We conclude that the presence of a wrapped Cauchy distribution in observed directional data can, in certain cases, be explained by data coming from two distinct underlying distributions. We discuss how this may relate to the presence of multiple movement modes within an observed path when analysing animal movement data.

Suggested Citation

  • Joseph D. Bailey & Edward A. Codling, 2021. "Emergence of the wrapped Cauchy distribution in mixed directional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 229-246, June.
  • Handle: RePEc:spr:alstar:v:105:y:2021:i:2:d:10.1007_s10182-020-00380-7
    DOI: 10.1007/s10182-020-00380-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-020-00380-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-020-00380-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louis-Paul Rivest & Thierry Duchesne & Aurélien Nicosia & Daniel Fortin, 2016. "A general angular regression model for the analysis of data on animal movement in ecology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 445-463, April.
    2. Claire M Postlethwaite & Todd E Dennis, 2013. "Effects of Temporal Resolution on an Inferential Model of Animal Movement," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    3. Nicosia, Aurélien & Duchesne, Thierry & Rivest, Louis-Paul & Fortin, Daniel, 2017. "A general hidden state random walk model for animal movement," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 76-95.
    4. S. Rao Jammalamadaka & Tomasz J. Kozubowski, 2017. "A General Approach for Obtaining Wrapped Circular Distributions via Mixtures," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 133-157, February.
    5. Christa Nilsen & John Paige & Olivia Warner & Benjamin Mayhew & Ryan Sutley & Matthew Lam & Andrew J Bernoff & Chad M Topaz, 2013. "Social Aggregation in Pea Aphids: Experiment and Random Walk Modeling," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-11, December.
    6. Breed, Greg A. & Costa, Daniel P. & Jonsen, Ian D. & Robinson, Patrick W. & Mills-Flemming, Joanna, 2012. "State-space methods for more completely capturing behavioral dynamics from animal tracks," Ecological Modelling, Elsevier, vol. 235, pages 49-58.
    7. Jennifer Pohle & Roland Langrock & Floris M. Beest & Niels Martin Schmidt, 2017. "Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 270-293, September.
    8. Alison L. Gibbs & Francis Edward Su, 2002. "On Choosing and Bounding Probability Metrics," International Statistical Review, International Statistical Institute, vol. 70(3), pages 419-435, December.
    9. Amy Hurford, 2009. "GPS Measurement Error Gives Rise to Spurious 180° Turning Angles and Strong Directional Biases in Animal Movement Data," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-12, May.
    10. Abe, Toshihiro & Ley, Christophe, 2017. "A tractable, parsimonious and flexible model for cylindrical data, with applications," Econometrics and Statistics, Elsevier, vol. 4(C), pages 91-104.
    11. Natalia Stefanini Da Silveira & Bernardo Brandão S Niebuhr & Renata de Lara Muylaert & Milton Cezar Ribeiro & Marco Aurélio Pizo, 2016. "Effects of Land Cover on the Movement of Frugivorous Birds in a Heterogeneous Landscape," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-19, June.
    12. Jones, M.C. & Pewsey, Arthur, 2005. "A Family of Symmetric Distributions on the Circle," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1422-1428, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Andrew Harvey & Dario Palumbo, 2023. "Regime switching models for circular and linear time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 374-392, July.
    3. A. Parton & P. G. Blackwell, 2017. "Bayesian Inference for Multistate ‘Step and Turn’ Animal Movement in Continuous Time," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 373-392, September.
    4. Zhang, Jingjing & Dennis, Todd E. & Landers, Todd J. & Bell, Elizabeth & Perry, George L.W., 2017. "Linking individual-based and statistical inferential models in movement ecology: A case study with black petrels (Procellaria parkinsoni)," Ecological Modelling, Elsevier, vol. 360(C), pages 425-436.
    5. Harvey, Andrew & Hurn, Stan & Palumbo, Dario & Thiele, Stephen, 2024. "Modelling circular time series," Journal of Econometrics, Elsevier, vol. 239(1).
    6. Boschetti, Fabio & Vanderklift, Mathew A., 2015. "How the movement characteristics of large marine predators influence estimates of their abundance," Ecological Modelling, Elsevier, vol. 313(C), pages 223-236.
    7. Ethan Lawler & Kim Whoriskey & William H. Aeberhard & Chris Field & Joanna Mills Flemming, 2019. "The Conditionally Autoregressive Hidden Markov Model (CarHMM): Inferring Behavioural States from Animal Tracking Data Exhibiting Conditional Autocorrelation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 651-668, December.
    8. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    9. Fenner, Trevor & Levene, Mark & Loizou, George, 2010. "Predicting the long tail of book sales: Unearthing the power-law exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2416-2421.
    10. Lamonica, Dominique & Drouineau, Hilaire & Capra, Hervé & Pella, Hervé & Maire, Anthony, 2020. "A framework for pre-processing individual location telemetry data for freshwater fish in a river section," Ecological Modelling, Elsevier, vol. 431(C).
    11. Gerhold, Stefan & Gülüm, I. Cetin, 2019. "Peacocks nearby: Approximating sequences of measures," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2406-2436.
    12. Xuejun Zhao & Ruihao Zhu & William B. Haskell, 2022. "Learning to Price Supply Chain Contracts against a Learning Retailer," Papers 2211.04586, arXiv.org.
    13. Abe, Toshihiro & Miyata, Yoichi & Shiohama, Takayuki, 2023. "Bayesian estimation for mode and anti-mode preserving circular distributions," Econometrics and Statistics, Elsevier, vol. 27(C), pages 136-160.
    14. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Marina E Wosniack & Marcos C Santos & Ernesto P Raposo & Gandhi M Viswanathan & Marcos G E da Luz, 2017. "The evolutionary origins of Lévy walk foraging," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    16. Marie Ernst & Yvik Swan, 2022. "Distances Between Distributions Via Stein’s Method," Journal of Theoretical Probability, Springer, vol. 35(2), pages 949-987, June.
    17. Crimaldi, Irene & Dai Pra, Paolo & Louis, Pierre-Yves & Minelli, Ida G., 2019. "Synchronization and functional central limit theorems for interacting reinforced random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 70-101.
    18. Mevin B. Hooten & Ruth King & Roland Langrock, 2017. "Guest Editor’s Introduction to the Special Issue on “Animal Movement Modeling”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 224-231, September.
    19. Leandro Nascimento, 2022. "Bounded arbitrage and nearly rational behavior," Papers 2212.02680, arXiv.org, revised Jul 2023.
    20. Giacomo Aletti & Caterina May & Piercesare Secchi, 2012. "A Functional Equation Whose Unknown is $\mathcal{P}([0,1])$ Valued," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1207-1232, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:105:y:2021:i:2:d:10.1007_s10182-020-00380-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.