IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v431y2020ics0304380020302611.html
   My bibliography  Save this article

A framework for pre-processing individual location telemetry data for freshwater fish in a river section

Author

Listed:
  • Lamonica, Dominique
  • Drouineau, Hilaire
  • Capra, Hervé
  • Pella, Hervé
  • Maire, Anthony

Abstract

Animal movement study often relies on individual tracking. The data scale (in time and space) varies according to the species, the environment where individuals live, or the exogenous processes that drive movement. To explore freshwater fish movement in rivers, fine-scale data are needed. Also, in rivers, recorded telemetry frequently shows missing data and location errors. The irregular time-steps, huge amount of data, environmental complexity (river section) and how fish move in such anisotropic environments undermine the use of statistical frameworks such as state-space models. To deal with these specificities, data pre-treatment can be required. We propose a generic method of telemetry data pre-processing, which can be transposed to other datasets. This framework includes interpolation to handle trajectories at fine time scales and performs data analysis within a state-space model.

Suggested Citation

  • Lamonica, Dominique & Drouineau, Hilaire & Capra, Hervé & Pella, Hervé & Maire, Anthony, 2020. "A framework for pre-processing individual location telemetry data for freshwater fish in a river section," Ecological Modelling, Elsevier, vol. 431(C).
  • Handle: RePEc:eee:ecomod:v:431:y:2020:i:c:s0304380020302611
    DOI: 10.1016/j.ecolmodel.2020.109190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020302611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rocio Joo & Sophie Bertrand & Jorge Tam & Ronan Fablet, 2013. "Hidden Markov Models: The Best Models for Forager Movements?," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-12, August.
    2. Breed, Greg A. & Costa, Daniel P. & Jonsen, Ian D. & Robinson, Patrick W. & Mills-Flemming, Joanna, 2012. "State-space methods for more completely capturing behavioral dynamics from animal tracks," Ecological Modelling, Elsevier, vol. 235, pages 49-58.
    3. Woillez, Mathieu & Fablet, Ronan & Ngo, Tran-Thanh & Lalire, Maxime & Lazure, Pascal & de Pontual, Hélène, 2016. "A HMM-based model to geolocate pelagic fish from high-resolution individual temperature and depth histories: European sea bass as a case study," Ecological Modelling, Elsevier, vol. 321(C), pages 10-22.
    4. Vermard, Youen & Rivot, Etienne & Mahévas, Stéphanie & Marchal, Paul & Gascuel, Didier, 2010. "Identifying fishing trip behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov Models," Ecological Modelling, Elsevier, vol. 221(15), pages 1757-1769.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woillez, Mathieu & Fablet, Ronan & Ngo, Tran-Thanh & Lalire, Maxime & Lazure, Pascal & de Pontual, Hélène, 2016. "A HMM-based model to geolocate pelagic fish from high-resolution individual temperature and depth histories: European sea bass as a case study," Ecological Modelling, Elsevier, vol. 321(C), pages 10-22.
    2. Floriane Cardiec & Sophie Bertrand & Matthew J Witt & Kristian Metcalfe & Brendan J Godley & Catherine McClellan & Raul Vilela & Richard J Parnell & François le Loc’h, 2020. "“Too Big To Ignore”: A feasibility analysis of detecting fishing events in Gabonese small-scale fisheries," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    3. Boyd, Charlotte & Punt, André E. & Weimerskirch, Henri & Bertrand, Sophie, 2014. "Movement models provide insights into variation in the foraging effort of central place foragers," Ecological Modelling, Elsevier, vol. 286(C), pages 13-25.
    4. Michael Garstang & Robert E Davis & Keith Leggett & Oliver W Frauenfeld & Steven Greco & Edward Zipser & Michael Peterson, 2014. "Response of African Elephants (Loxodonta africana) to Seasonal Changes in Rainfall," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-13, October.
    5. Walker, Nicola D. & Boyd, Robin & Watson, Joseph & Kotz, Max & Radford, Zachary & Readdy, Lisa & Sibly, Richard & Roy, Shovonlal & Hyder, Kieran, 2020. "A spatially explicit individual-based model to support management of commercial and recreational fisheries for European sea bass Dicentrarchus labrax," Ecological Modelling, Elsevier, vol. 431(C).
    6. Zhang, Jingjing & Dennis, Todd E. & Landers, Todd J. & Bell, Elizabeth & Perry, George L.W., 2017. "Linking individual-based and statistical inferential models in movement ecology: A case study with black petrels (Procellaria parkinsoni)," Ecological Modelling, Elsevier, vol. 360(C), pages 425-436.
    7. Russo, Tommaso & Pulcinella, Jacopo & Parisi, Antonio & Martinelli, Michela & Belardinelli, Andrea & Santojanni, Alberto & Cataudella, Stefano & Colella, Sabrina & Anderlini, Luca, 2015. "Modelling the strategy of mid-water trawlers targeting small pelagic fish in the Adriatic Sea and its drivers," Ecological Modelling, Elsevier, vol. 300(C), pages 102-113.
    8. Erico N de Souza & Kristina Boerder & Stan Matwin & Boris Worm, 2016. "Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-20, July.
    9. Nielsen, J.K. & Mueter, F.J. & Adkison, M.D. & Loher, T. & McDermott, S.F. & Seitz, A.C., 2019. "Effect of study area bathymetric heterogeneity on parameterization and performance of a depth-based geolocation model for demersal fishes," Ecological Modelling, Elsevier, vol. 402(C), pages 18-34.
    10. Mónica A Silva & Ian Jonsen & Deborah J F Russell & Rui Prieto & Dave Thompson & Mark F Baumgartner, 2014. "Assessing Performance of Bayesian State-Space Models Fit to Argos Satellite Telemetry Locations Processed with Kalman Filtering," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    11. Walker, E. & Bez, N., 2010. "A pioneer validation of a state-space model of vessel trajectories (VMS) with observers’ data," Ecological Modelling, Elsevier, vol. 221(17), pages 2008-2017.
    12. Aurélie Foveau & Sandrine Vaz & Nicolas Desroy & Vladimir E Kostylev, 2017. "Process-driven and biological characterisation and mapping of seabed habitats sensitive to trawling," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-30, October.
    13. Paterson, Barbara, 2015. "Tracks, trawls and lines—Knowledge practices of skippers in the Namibian hake fisheries," Marine Policy, Elsevier, vol. 60(C), pages 309-317.
    14. Boschetti, Fabio & Vanderklift, Mathew A., 2015. "How the movement characteristics of large marine predators influence estimates of their abundance," Ecological Modelling, Elsevier, vol. 313(C), pages 223-236.
    15. Joseph D. Bailey & Edward A. Codling, 2021. "Emergence of the wrapped Cauchy distribution in mixed directional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 229-246, June.
    16. A. Parton & P. G. Blackwell, 2017. "Bayesian Inference for Multistate ‘Step and Turn’ Animal Movement in Continuous Time," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 373-392, September.
    17. Axel Finke & Ruth King & Alexandros Beskos & Petros Dellaportas, 2019. "Efficient Sequential Monte Carlo Algorithms for Integrated Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 204-224, June.
    18. Nielsen, Julie K. & Tribuzio, Cindy A., 2023. "Development and parameterization of a data likelihood model for geolocation of a bentho-pelagic fish in the North Pacific Ocean," Ecological Modelling, Elsevier, vol. 478(C).
    19. Ethan Lawler & Kim Whoriskey & William H. Aeberhard & Chris Field & Joanna Mills Flemming, 2019. "The Conditionally Autoregressive Hidden Markov Model (CarHMM): Inferring Behavioural States from Animal Tracking Data Exhibiting Conditional Autocorrelation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 651-668, December.
    20. Demestre, Montserrat & Muntadas, Alba & de Juan, Silvia & Mitilineou, Chryssi & Sartor, Paolo & Mas, Julio & Kavadas, Stefanos & Martín, Javier, 2015. "The need for fine-scale assessment of trawl fishing effort to inform on an ecosystem approach to fisheries: Exploring three data sources in Mediterranean trawling grounds," Marine Policy, Elsevier, vol. 62(C), pages 134-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:431:y:2020:i:c:s0304380020302611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.