IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i8p1376-1386.html
   My bibliography  Save this article

Steady states and sensitivities of commonly used pelagic ecosystem model components

Author

Listed:
  • Löptien, Ulrike

Abstract

Pelagic, coupled ocean circulation-ecosystem models, are widely used in climate research. These tools aim to quantify fluxes of nutrients and carbon in the ocean and are, increasingly, the base of future projections. For this purpose it is crucial to quantify and identify the sources of uncertainties. In contrast to physical models, the underlying equations for ecosystem models are derived from empirical relationships rather than based on first principles. This resulted in the development of a multitude of different ecosystem models – different in respect to both, underlying principles and complexity. Clearly, the question arises, to what extent the sensitivities of these models are comparable.

Suggested Citation

  • Löptien, Ulrike, 2011. "Steady states and sensitivities of commonly used pelagic ecosystem model components," Ecological Modelling, Elsevier, vol. 222(8), pages 1376-1386.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:8:p:1376-1386
    DOI: 10.1016/j.ecolmodel.2011.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011000627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jef Huisman & Nga N. Pham Thi & David M. Karl & Ben Sommeijer, 2006. "Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum," Nature, Nature, vol. 439(7074), pages 322-325, January.
    2. Andreas Schmittner, 2005. "Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation," Nature, Nature, vol. 434(7033), pages 628-633, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Anglu & Gao, Shufei & Heggerud, Christopher M. & Wang, Hao & Ma, Zengling & Yuan, Sanling, 2023. "Fluctuation of growth and photosynthetic characteristics in Prorocentrum shikokuense under phosphorus limitation: Evidence from field and laboratory," Ecological Modelling, Elsevier, vol. 479(C).
    2. Bouderbala, Ilhem & El Saadi, Nadjia & Bah, Alassane & Auger, Pierre, 2019. "A simulation study on how the resource competition and anti-predator cooperation impact the motile-phytoplankton groups’ formation under predation stress," Ecological Modelling, Elsevier, vol. 391(C), pages 16-28.
    3. Fasma Diele & Carmela Marangi, 2019. "Geometric Numerical Integration in Ecological Modelling," Mathematics, MDPI, vol. 8(1), pages 1-30, December.
    4. Shantong Sun & Andrew F. Thompson & Jimin Yu & Lixin Wu, 2024. "Transient overturning changes cause an upper-ocean nutrient decline in a warming climate," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Sudakov, Ivan & Vakulenko, Sergey A. & Bruun, John T., 2022. "Stochastic physics of species extinctions in a large population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    6. Chuanjun Dai & Hengguo Yu & Qing Guo & He Liu & Qi Wang & Zengling Ma & Min Zhao, 2019. "Dynamics Induced by Delay in a Nutrient-Phytoplankton Model with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    7. Anders Levermann & Jonathan Bamber & Sybren Drijfhout & Andrey Ganopolski & Winfried Haeberli & Neil Harris & Matthias Huss & Kirstin Krüger & Timothy Lenton & Ronald Lindsay & Dirk Notz & Peter Wadha, 2012. "Potential climatic transitions with profound impact on Europe," Climatic Change, Springer, vol. 110(3), pages 845-878, February.
    8. Serizawa, Hiroshi & Amemiya, Takashi & Itoh, Kiminori, 2010. "Effects of buoyancy, transparency and zooplankton feeding on surface maxima and deep maxima: Comprehensive mathematical model for vertical distribution in cyanobacterial biomass," Ecological Modelling, Elsevier, vol. 221(17), pages 2028-2037.
    9. Urtizberea, Agurtzane & Dupont, Nicolas & Rosland, Rune & Aksnes, Dag L., 2013. "Sensitivity of euphotic zone properties to CDOM variations in marine ecosystem models," Ecological Modelling, Elsevier, vol. 256(C), pages 16-22.
    10. Da Rocha, José María & Gutiérrez Huerta, María José & Villasante, Sebastián, 2013. "Economic Effects of Global Warming under Stock Growth Uncertainty: The European Sardine Fishery," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    11. Liu, Zhi-bin & Liu, Shu-tang & Tian, Da-dong & Wang, Da, 2021. "Stability analysis of the plankton community with advection," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Withrow, Frances G. & Roelke, Daniel L. & Muhl, Rika M.W. & Bhattacharyya, Joydeb, 2018. "Water column processes differentially influence richness and diversity of neutral, lumpy and intransitive phytoplankton assemblages," Ecological Modelling, Elsevier, vol. 370(C), pages 22-32.
    13. Carl-Friedrich Schleussner & Anders Levermann & Malte Meinshausen, 2014. "Probabilistic projections of the Atlantic overturning," Climatic Change, Springer, vol. 127(3), pages 579-586, December.
    14. Roy, Shovonlal, 2009. "The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy," Theoretical Population Biology, Elsevier, vol. 75(1), pages 68-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:8:p:1376-1386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.