IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v479y2023ics0304380023000388.html
   My bibliography  Save this article

Fluctuation of growth and photosynthetic characteristics in Prorocentrum shikokuense under phosphorus limitation: Evidence from field and laboratory

Author

Listed:
  • Shen, Anglu
  • Gao, Shufei
  • Heggerud, Christopher M.
  • Wang, Hao
  • Ma, Zengling
  • Yuan, Sanling

Abstract

Exploring the complex interaction between algal growth and their photo-physiology is of significant interest as it can further the understanding of harmful algal blooms. To this end, we investigate variations in cell abundance and chlorophyll fluorescence parameters during the algal bloom formation of Prorocentrum shikokuense in the field and batch culture via the pulse amplitude modulated fluorometry. Furthermore, based on the interaction between algal growth and its photo-physiology status, we develop a novel algal growth model incorporating cell growth delay. The model parameters are estimated by fitting the experimental data of P. shikokuense and validated by the experimental data of Symbiodinium sp. The experimental results show that the growth status and photosynthetic parameters of algal cells fluctuate in both field and laboratory experiments and that the photosynthetic parameters have a faster response than growth parameters. According to the experimental and mathematical results, the time delay between the slow growth of algae and the rapid change of photosynthetic parameters may be a physiological mechanism leading to the fluctuations in algal growth. These results are significant for studying the relationship between phytoplankton growth dynamics and photosynthetic parameters and will help resource managers to predict and deepen the understanding of harmful algal blooms.

Suggested Citation

  • Shen, Anglu & Gao, Shufei & Heggerud, Christopher M. & Wang, Hao & Ma, Zengling & Yuan, Sanling, 2023. "Fluctuation of growth and photosynthetic characteristics in Prorocentrum shikokuense under phosphorus limitation: Evidence from field and laboratory," Ecological Modelling, Elsevier, vol. 479(C).
  • Handle: RePEc:eee:ecomod:v:479:y:2023:i:c:s0304380023000388
    DOI: 10.1016/j.ecolmodel.2023.110310
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023000388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergio A. Sañudo-Wilhelmy & Antonio Tovar-Sanchez & Fei-Xue Fu & Douglas G. Capone & Edward J. Carpenter & David A. Hutchins, 2004. "The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry," Nature, Nature, vol. 432(7019), pages 897-901, December.
    2. Jef Huisman & Nga N. Pham Thi & David M. Karl & Ben Sommeijer, 2006. "Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum," Nature, Nature, vol. 439(7074), pages 322-325, January.
    3. Gao, Shufei & Shen, Anglu & Jiang, Jie & Wang, Hao & Yuan, Sanling, 2022. "Kinetics of phosphate uptake in the dinoflagellate Karenia mikimotoi in response to phosphate stress and temperature," Ecological Modelling, Elsevier, vol. 468(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yu & Waite, Anya M. & Gal, Gideon & Hipsey, Matthew R., 2013. "An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment," Ecological Modelling, Elsevier, vol. 252(C), pages 196-213.
    2. Bouderbala, Ilhem & El Saadi, Nadjia & Bah, Alassane & Auger, Pierre, 2019. "A simulation study on how the resource competition and anti-predator cooperation impact the motile-phytoplankton groups’ formation under predation stress," Ecological Modelling, Elsevier, vol. 391(C), pages 16-28.
    3. Fasma Diele & Carmela Marangi, 2019. "Geometric Numerical Integration in Ecological Modelling," Mathematics, MDPI, vol. 8(1), pages 1-30, December.
    4. Liao, Tiancai, 2024. "The impact of temperature variation on the algae–zooplankton dynamics with size-selective disturbance," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Sudakov, Ivan & Vakulenko, Sergey A. & Bruun, John T., 2022. "Stochastic physics of species extinctions in a large population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    6. Chuanjun Dai & Hengguo Yu & Qing Guo & He Liu & Qi Wang & Zengling Ma & Min Zhao, 2019. "Dynamics Induced by Delay in a Nutrient-Phytoplankton Model with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    7. Serizawa, Hiroshi & Amemiya, Takashi & Itoh, Kiminori, 2010. "Effects of buoyancy, transparency and zooplankton feeding on surface maxima and deep maxima: Comprehensive mathematical model for vertical distribution in cyanobacterial biomass," Ecological Modelling, Elsevier, vol. 221(17), pages 2028-2037.
    8. Gao, Shufei & Shen, Anglu & Jiang, Jie & Wang, Hao & Yuan, Sanling, 2022. "Kinetics of phosphate uptake in the dinoflagellate Karenia mikimotoi in response to phosphate stress and temperature," Ecological Modelling, Elsevier, vol. 468(C).
    9. Urtizberea, Agurtzane & Dupont, Nicolas & Rosland, Rune & Aksnes, Dag L., 2013. "Sensitivity of euphotic zone properties to CDOM variations in marine ecosystem models," Ecological Modelling, Elsevier, vol. 256(C), pages 16-22.
    10. Arhonditsis, George B. & Stow, Craig A. & Paerl, Hans W. & Valdes-Weaver, Lexia M. & Steinberg, Laura J. & Reckhow, Kenneth H., 2007. "Delineation of the role of nutrient dynamics and hydrologic forcing on phytoplankton patterns along a freshwater–marine continuum," Ecological Modelling, Elsevier, vol. 208(2), pages 230-246.
    11. Liu, Zhi-bin & Liu, Shu-tang & Tian, Da-dong & Wang, Da, 2021. "Stability analysis of the plankton community with advection," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Withrow, Frances G. & Roelke, Daniel L. & Muhl, Rika M.W. & Bhattacharyya, Joydeb, 2018. "Water column processes differentially influence richness and diversity of neutral, lumpy and intransitive phytoplankton assemblages," Ecological Modelling, Elsevier, vol. 370(C), pages 22-32.
    13. Alexandra Moura & Michael A Savageau & Rui Alves, 2013. "Relative Amino Acid Composition Signatures of Organisms and Environments," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
    14. Löptien, Ulrike, 2011. "Steady states and sensitivities of commonly used pelagic ecosystem model components," Ecological Modelling, Elsevier, vol. 222(8), pages 1376-1386.
    15. Roy, Shovonlal, 2009. "The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy," Theoretical Population Biology, Elsevier, vol. 75(1), pages 68-75.
    16. Jing Liu & Chao Zang & Qiting Zuo & Chunhui Han & Stefan Krause, 2023. "Application and Comparison of Different Models for Quantifying the Aquatic Community in a Dam-Controlled River," IJERPH, MDPI, vol. 20(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:479:y:2023:i:c:s0304380023000388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.