IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v127y2014i3p579-586.html
   My bibliography  Save this article

Probabilistic projections of the Atlantic overturning

Author

Listed:
  • Carl-Friedrich Schleussner
  • Anders Levermann
  • Malte Meinshausen

Abstract

Changes in the Atlantic overturning circulation have a strong influence on European temperatures, North American sea level and other climate phenomena worldwide. A meaningful assessment of associated societal impacts needs to be based on the full range of its possible future evolution. This requires capturing both the uncertainty in future warming pathways and the inherently long-term response of the ocean circulation. While probabilistic projections of the global mean and regional temperatures exist, process-based probabilistic assessments of large-scale dynamical systems such as the Atlantic overturning are still missing. Here we present such an assessment and find that a reduction of more than 50 % in Atlantic overturning strength by the end of the 21 s t century is within the likely range under an unmitigated climate change scenario (RCP8.5). By combining linear response functions derived from comprehensive climate simulations with the full range of possible future warming pathways, we provide probability estimates of overturning changes by the year 2100. A weakening of more than 25 % is found to be very unlikely under a climate protection scenario (RCP2.6), but likely for unmitigated climate change. The method is able to reproduce the modelled recovery caused by climatic equilibration under climate protection scenarios which provides confidence in the approach. Within this century, a reduction of the Atlantic overturning is a robust climatic phenomena that intensifies with global warming and needs to be accounted for in global adaptation strategies. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Carl-Friedrich Schleussner & Anders Levermann & Malte Meinshausen, 2014. "Probabilistic projections of the Atlantic overturning," Climatic Change, Springer, vol. 127(3), pages 579-586, December.
  • Handle: RePEc:spr:climat:v:127:y:2014:i:3:p:579-586
    DOI: 10.1007/s10584-014-1265-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1265-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1265-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Slangen & M. Carson & C. Katsman & R. van de Wal & A. Köhl & L. Vermeersen & D. Stammer, 2014. "Projecting twenty-first century regional sea-level changes," Climatic Change, Springer, vol. 124(1), pages 317-332, May.
    2. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    3. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    4. Andreas Schmittner, 2005. "Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation," Nature, Nature, vol. 434(7033), pages 628-633, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariia Belaia & Michael Funke & Nicole Glanemann, 2017. "Global Warming and a Potential Tipping Point in the Atlantic Thermohaline Circulation: The Role of Risk Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 93-125, May.
    2. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    2. Girod, Bastien & van Vuuren, Detlef P. & Deetman, Sebastiaan, 2012. "Global travel within the 2°C climate target," Energy Policy, Elsevier, vol. 45(C), pages 152-166.
    3. Michael Funke & Yu-Fu Chen & Nicole Glanemann, 2011. "Time is Running Out: The 2°C Target and Optimal Climate Policies," Quantitative Macroeconomics Working Papers 21111, Hamburg University, Department of Economics.
    4. Zhang, Bin & Niu, Niu & Li, Hao & Wang, Zhaohua, 2023. "Assessing the efforts of coal phaseout for carbon neutrality in China," Applied Energy, Elsevier, vol. 352(C).
    5. Lup Wai Chew & Xian-Xiang Li & Michael Y. L. Chew, 2023. "Climate Change Projection and Its Impacts on Building Façades in Singapore," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    6. Batten,, Sandra & Sowerbutts, Rhiannon & Tanaka, Misa, 2016. "Let’s talk about the weather: the impact of climate change on central banks," Bank of England working papers 603, Bank of England.
    7. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    8. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    9. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    10. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    11. Waldemar Karpa & Antonio Grginović, 2021. "(Not So) Stranded: The Case of Coal in Poland," Energies, MDPI, vol. 14(24), pages 1-16, December.
    12. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    13. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    14. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    15. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    16. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    17. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    18. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    20. Laeven, Luc & Popov, Alexander, 2023. "Carbon taxes and the geography of fossil lending," Journal of International Economics, Elsevier, vol. 144(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:127:y:2014:i:3:p:579-586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.