IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v75y2009i1p68-75.html
   My bibliography  Save this article

The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy

Author

Listed:
  • Roy, Shovonlal

Abstract

Without the top-down effects and the external/physical forcing, a stable coexistence of two phytoplankton species under a single resource is impossible — a result well known from the principle of competitive exclusion. Here I demonstrate by analysis of a mathematical model that such a stable coexistence in a homogeneous media without any external factor would be possible, at least theoretically, provided (i) one of the two species is toxin producing thereby has an allelopathic effect on the other, and (ii) the allelopathic effect exceeds a critical level. The threshold level of allelopathy required for the coexistence has been derived analytically in terms of the parameters associated with the resource competition and the nutrient recycling. That the extra mortality of a competitor driven by allelopathy of a toxic species gives a positive feed back to the algal growth process through the recycling is explained. And that this positive feed back plays a pivotal role in reducing competition pressures and helping species succession in the two-species model is demonstrated. Based on these specific coexistence results, I introduce and explain theoretically the allelopathic effect of a toxic species as a ‘pseudo-mixotrophy’—a mechanism of ‘if you cannot beat them or eat them, just kill them by chemical weapons’. The impact of this mechanism of species succession by pseudo-mixotrophy in the form of alleopathy is discussed in the context of current understanding on straight mixotrophy and resource-species relationship among phytoplankton species.

Suggested Citation

  • Roy, Shovonlal, 2009. "The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy," Theoretical Population Biology, Elsevier, vol. 75(1), pages 68-75.
  • Handle: RePEc:eee:thpobi:v:75:y:2009:i:1:p:68-75
    DOI: 10.1016/j.tpb.2008.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580908001238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2008.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jef Huisman & Nga N. Pham Thi & David M. Karl & Ben Sommeijer, 2006. "Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum," Nature, Nature, vol. 439(7074), pages 322-325, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jia-Fang & Wang, Shaoli & Kong, Xiangjun, 2018. "Effects of toxin delay on the dynamics of a phytoplankton–zooplankton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1150-1162.
    2. Lv, Yun-fei & Li, Tongtong & Pei, Yongzhen & Yuan, Rong, 2016. "A complete analysis of the global dynamics of a diffusive predator and toxic prey model," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 182-196.
    3. Javidi, Mohammad & Ahmad, Bashir, 2015. "Dynamic analysis of time fractional order phytoplankton–toxic phytoplankton–zooplankton system," Ecological Modelling, Elsevier, vol. 318(C), pages 8-18.
    4. Jiang, Zhichao & Zhang, Tongqian, 2017. "Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 693-704.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Anglu & Gao, Shufei & Heggerud, Christopher M. & Wang, Hao & Ma, Zengling & Yuan, Sanling, 2023. "Fluctuation of growth and photosynthetic characteristics in Prorocentrum shikokuense under phosphorus limitation: Evidence from field and laboratory," Ecological Modelling, Elsevier, vol. 479(C).
    2. Bouderbala, Ilhem & El Saadi, Nadjia & Bah, Alassane & Auger, Pierre, 2019. "A simulation study on how the resource competition and anti-predator cooperation impact the motile-phytoplankton groups’ formation under predation stress," Ecological Modelling, Elsevier, vol. 391(C), pages 16-28.
    3. Fasma Diele & Carmela Marangi, 2019. "Geometric Numerical Integration in Ecological Modelling," Mathematics, MDPI, vol. 8(1), pages 1-30, December.
    4. Sudakov, Ivan & Vakulenko, Sergey A. & Bruun, John T., 2022. "Stochastic physics of species extinctions in a large population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    5. Chuanjun Dai & Hengguo Yu & Qing Guo & He Liu & Qi Wang & Zengling Ma & Min Zhao, 2019. "Dynamics Induced by Delay in a Nutrient-Phytoplankton Model with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    6. Serizawa, Hiroshi & Amemiya, Takashi & Itoh, Kiminori, 2010. "Effects of buoyancy, transparency and zooplankton feeding on surface maxima and deep maxima: Comprehensive mathematical model for vertical distribution in cyanobacterial biomass," Ecological Modelling, Elsevier, vol. 221(17), pages 2028-2037.
    7. Urtizberea, Agurtzane & Dupont, Nicolas & Rosland, Rune & Aksnes, Dag L., 2013. "Sensitivity of euphotic zone properties to CDOM variations in marine ecosystem models," Ecological Modelling, Elsevier, vol. 256(C), pages 16-22.
    8. Liu, Zhi-bin & Liu, Shu-tang & Tian, Da-dong & Wang, Da, 2021. "Stability analysis of the plankton community with advection," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Withrow, Frances G. & Roelke, Daniel L. & Muhl, Rika M.W. & Bhattacharyya, Joydeb, 2018. "Water column processes differentially influence richness and diversity of neutral, lumpy and intransitive phytoplankton assemblages," Ecological Modelling, Elsevier, vol. 370(C), pages 22-32.
    10. Löptien, Ulrike, 2011. "Steady states and sensitivities of commonly used pelagic ecosystem model components," Ecological Modelling, Elsevier, vol. 222(8), pages 1376-1386.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:75:y:2009:i:1:p:68-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.