IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v38y2006i1p283-300.html
   My bibliography  Save this article

Long-term Trends in Vegetation Dynamics and Forest Fires in Brandenburg (Germany) Under a Changing Climate

Author

Listed:
  • Kirsten Thonicke
  • Wolfgang Cramer

Abstract

The human influence on environmental processes has been described for many types of land use. One of the oldest tools to modify people’s environment is fire, which has dominated fire regimes in many regions over long time scales. This paper focuses on a German case study region, where 80–90% of the fires are human-caused. The objectives of this study are the application of the Regional Fire Model (Reg-FIRM), a process-based fire model that is incorporated into the LPJ Dynamic Global Vegetation Model, to temperate forests under historic climate conditions and to explore ranges of potential impacts of future climate change on fire and vegetation dynamics. Simulation experiments are designed to simulate historic fire pattern and to explore influences of vegetation on fire. Simulated fire pattern reproduced the observed average fire conditions reasonably well although with a smaller amplitude. This leads to underestimation of extreme fire years as well as an overestimation of low fire years. Vegetation composition influenced fire spread conditions in the temperate forest and had little impact on fire ignition potentials, except when only broad-leaved deciduous forests were assumed. Fire is likely to change under climate change conditions. Simulated experiments were conducted to explore the effects of climate change and rising CO 2 concentration given the potential natural vegetation as the best-case for Brandenburg. Three GCM scenarios predicting different future climatic changes were applied, and resulted in quantitatively different future fire patterns. Depending on future precipitation pattern and the influence of the CO 2 effect on canopy conductance and thus litter moisture, fire was predicted to either decrease or slightly increase in Brandenburg forests, but the burnt area would not exceed current, extreme fire years. Generally, fire changes had no implication for vegetation composition in Brandenburg, but reduced vegetation carbon gain after 2050. In the HadCM3 application, simulated increase in grass cover due to a large burnt area after 2075 accelerated fire spread conditions, thus still increasing the burnt area, while climatic fire danger and number of fires already began to decline. These interactions underline the importance to consider the full range of fire processes and interactions with vegetation dynamics in a simulation model. Copyright Springer 2006

Suggested Citation

  • Kirsten Thonicke & Wolfgang Cramer, 2006. "Long-term Trends in Vegetation Dynamics and Forest Fires in Brandenburg (Germany) Under a Changing Climate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 283-300, May.
  • Handle: RePEc:spr:nathaz:v:38:y:2006:i:1:p:283-300
    DOI: 10.1007/s11069-005-8639-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-005-8639-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-005-8639-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    2. Xiaowei Li & Gang Zhao & Xiubo Yu & Qiang Yu, 2014. "A comparison of forest fire indices for predicting fire risk in contrasting climates in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1339-1356, January.
    3. Bruno Merz & Jana Friedrich & Markus Disse & Jochen Schwarz & Johann Goldammer & Jochen Wächter, 2006. "Possibilities and Limitations of Interdisciplinary, User-oriented Research: Experiences from the German Research Network Natural Disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 3-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:38:y:2006:i:1:p:283-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.